1.中山大学物理与天文学院,广东 珠海 519082
2.东北大学理学院,辽宁 沈阳 110004
李霄栋(1986年生),男;研究方向:大尺度结构;E-mail:lixiaod25@mail.sysu.edu.cn
张鑫(1977年生),男;研究方向:宇宙学;E-mail:zhangxin@mail.neu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-08,
收稿日期:2020-11-18,
录用日期:2020-11-19
扫 描 看 全 文
李霄栋,肖小圆,王凌风等.天琴对宇宙膨胀的探测能力研究[J].中山大学学报(自然科学版),2021,60(01):62-73.
LI Xiaodong,XIAO Xiaoyuan,WANG Lingfeng,et al.Research on Tianqin's capability of probing the cosmic expansion[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):62-73.
李霄栋,肖小圆,王凌风等.天琴对宇宙膨胀的探测能力研究[J].中山大学学报(自然科学版),2021,60(01):62-73. DOI: 10.13471/j.cnki.acta.snus.2020.11.18.2020B143.
LI Xiaodong,XIAO Xiaoyuan,WANG Lingfeng,et al.Research on Tianqin's capability of probing the cosmic expansion[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):62-73. DOI: 10.13471/j.cnki.acta.snus.2020.11.18.2020B143.
经过近几十年的发展,宇宙学的研究已经进入精确宇宙学时代。根据Planck测量结果和ΛCDM模型,只需要6个参数就可以在统计意义上重现出与观测数据基本符合的宇宙演化历史。但是实际上,当前宇宙学领域中还存在许多未解决的重要科学问题,而且不同的观测数据在基于基本ΛCDM模型进行宇宙学参数推断时会出现一些不一致性。这些问题的回答都需要对基本ΛCDM模型进行扩展,并对额外引入的参数进行精确的测量。目前主流的宇宙学探针主要是针对宇宙的膨胀历史和宇宙的结构增长进行观测的光学(以及近红外)项目,因此它们可能存在着相似的系统误差。发展全新的非光学观测手段的宇宙学探针对于宇宙学未来的研究至关重要。因为引力波振幅携带了绝对光度距离的信息,所以能够帮助建立真正的距离——红移关系,用以研究宇宙的膨胀历史。这种引力波观测被称为“标准汽笛”。宇宙学研究是天琴、LISA等空间引力波探测器的重要研究目标之一。这些探测器预计都可以在未来观测到大量的引力波事件,为宇宙学研究(特别是高红移宇宙)提供珍贵的观测数据。本文参考相关的文献,介绍了天琴标准汽笛数据限制宇宙学参数能力的情况。考虑了pop Ⅲ、Q3nod和Q3d三种大质量黑洞双星模型,结果表明,对于不同的大质量黑洞双星模型,天琴项目对宇宙学参数的限制能力各有不同,其中Q3nod 模型下的限制能力最强。天琴的标准汽笛探测有助于打破其他观测手段所导致的宇宙学参数简并,从而有效地提升宇宙学参数的测量精度。我们有理由相信,未来的引力波观测与光学和射电观测相结合将把宇宙膨胀历史的探索推进至一个全新的层面,为探测哈勃常数大小、揭示暗能量的本质属性提供帮助。
After decades of development, the research of cosmology has entered the epoch of precision cosmology. According to the Planck observational results and the ΛCDM model, we need only 6 parameters to reproduce the evolution history of the universe which is consistent with the observed data in a statistical sense. However, in fact, there are still many unsolved important scientific problems in the field of cosmology, and there will be some inconsistencies in different observational data when inferring cosmological parameters based on the basic ΛCDM model. The answers to these questions require extension of the basic ΛCDM model and accurately measurements of the additional parameters. At present, the mainstream cosmological probes are mainly optical (and near-infrared) observations of the expansion history and structural growth of the universe, so they may have similar systematic errors. It is very important for the future research of cosmology to develop new non-optical observational probes. Because the amplitude of gravitational wave carries the information of absolute luminosity distance, it can help us to establish the real distance-redshift relation and study the expansion history of the universe. This observation of gravitational waves is known “standard siren”. Cosmological research is one of the important research objectives of the Tianqin space gravitational wave detector, which is expected to be able to observe a large number of gravitational wave events in the future, providing valuable observational data for the study of cosmology (especially at high redshift). In this paper, we introduce previous researches about the ability of Tianqin standard siren data to constrain the cosmological parameters. We consider pop Ⅲ, Q3nod and Q3d models. The results show that for different binary models of massive black holes, the Tianqin project yields to different constraining results on the cosmological parameters, and the Q3nod model has the strongest ability. The standard siren detection of Tianqin is helpful to break the degeneracy of cosmological parameters caused by other observation methods, so as to effectively improve the measurement accuracy of cosmological parameters. We have reason to believe that the future gravitational wave observations combined with optical and radio observations will promote the exploration of the history of cosmic expansion to a new level, and provide help to detect the size of Hubble constant and reveal the nature of dark energy.
宇宙学宇宙大尺度结构宇宙学参数
cosmologylarge-scale structure of universecosmological parameters
HUBBLE E. A relation between distance and radial velocity among extragalactic nebulae[J]. Proc Nat Acad Sci, 1929, 15: 168-173.
ALPHER R A, BETHE H, GAMOW G. The origin of chemical elements[J]. Phys Rev, 1948,73(7):803-804.
ALPHER R A, HERMAN R C. Remarks on the evolution of the expanding Universe[J]. Phys Rev, 1949, 75(7):1089-1095.
ADE P A R, AGHANIM N, ARNAUD M, et al. Planck 2015 results. . Cosmological parameters[J]. Astron Astrophys, 2016, 594: A13.
RIESS A G, FILIPPENKO A V, CHALLIS P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant[J]. Astron J, 1998, 116: 1009-1038.
PERLMUTTER S, ALDERING G, GOLDHABER G, et al. Measurements of Ω and Λ from 42 high redshift supernovae[J]. Astrophys J, 1999, 517: 565-586.
WEINBERG S. The cosmological constant problem[J]. Rev Mod Phys, 1988, 61: 1-23.
LI M, LI X D, WANG S, et al. Dark energy[J]. Commun Theor Phys, 2011, 56: 525-604.
WETTERICH C. Cosmology and the fate of dilatation symmetry[J]. Nucl Phys, 1988, B302: 668-696.
ZLATEV I, WANG L M, STEINHARDT P J. Quintessence, cosmic coincidence, and the cosmological constant[J]. Phys Rev Lett, 1999, 82: 896-899.
CALDWELL R R. A phantom menace?[J]. Phys Lett, 2002, B545: 23-29.
CLINE J M, JEON S, MOORE G D. The phantom menaced: Constraints on low-energy effffective ghosts [J]. Phys Rev, 2004, D70: 043543.
GARRIGA J, VILENKIN A. Living with ghosts in Lorentz invariant theories[J]. JCAP, 2013, 1301: 036 .
CAI Y F, SARIDAKIS E N, SETARE M R, et al. Quintom cosmology: Theoretical implications and observations[J]. Physics Reports,2010, 493: 1-60.
CHIBA T, OKABE T, YAMAGUCHI M. Kinetically driven quintessence[J]. Phys Rev, 2000, D62: 023511 .
ARMENDARIZ-PICON C, MUKHANOV V F, STEINHARDT P J. A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration[J]. Phys Rev Lett, 2000, 85: 4438-4441.
ARMENDARIZ-PICON C, MUKHANOV V F, STEINHARDT P J. Essentials of k essence[J]. Phys Rev, 2001, D63: 103510.
ARKANI-HAMED N, CHENG H C, LUTY M A, et al. Ghost condensation and a consistent infrared modifification of gravity[J]. JHEP, 2004, 5: 074.
PIAZZA F, TSUJIKAWA S. Dilatonic ghost condensate as dark energy[J]. JCAP, 2004, 0407: 004.
DEFFFFAYET C, PUJOLAS O, SAWICKI I, et al. Imperfect dark energy from kinetic gravity braiding[J]. JCAP, 2010, 1010: 026.
PUJOLAS O, SAWICKI I, VIKMAN A. The imperfect fluid behind kinetic gravity braiding[J]. JHEP, 2011, 11: 156.
NICOLIS A, RATTAZZI R, TRINCHERINI E. The Galileon as a local modi-fification of gravity[J]. Phys Rev, 2009, D79: 064036.
KOBAYASHI T, YAMAGUCHI M, YOKOYAMA J. G-inflflation: Inflflation driven by the Galileon fifield[J]. Phys Rev Lett, 2010, 105: 231302.
RIBAS M O, DEVECCHI F P, KREMER G M. Fermions as sources of accelerated regimes in cosmology[J]. Phys Rev, 2005, D72: 123502.
CAI Y F,WANG J. Dark energy model with spinor matter and its quintom scenario[J]. Class Quant Grav, 2008, 25: 165014.
YAJNIK U A. Dark energy from ferromagnetic condensation of cosmic magninos[EB/OL]. https://arxiv.org/abs/1102.2562https://arxiv.org/abs/1102.2562.
TSYBA P, YERZHANOV K, ESMAKHANOVA K, et al. Reconstruction of f-essence and fermionic Chaplygin gas models of dark energy[EB/OL]. https://arxiv.org/abs/1103.5918https://arxiv.org/abs/1103.5918.
ARMENDARIZ-PICON C. Could dark energy be vector-like?[J]. JCAP, 2004, 0407: 007.
ZHAO W, ZHANG Y. The state equation of the Yang-Mills fifield dark energy models[J]. Class Quant Grav, 2006, 23: 3405-3418.
GUPTA P D. Dark energy and Chern-Simons like gravity from a dynamical four-form[EB/OL].https://arxiv.org/abs/0905.1621https://arxiv.org/abs/0905.1621.
ABRAMO L R , WOODARD R P. A scalar measure of the local expansion rate[J]. Phys Rev, 2002, D65: 043507.
KAMENSHCHIK A Y, MOSCHELLA U, PASQUIER V. An alternative to quintessence[J]. Phys Lett, 2001, B511: 265-268.
BILIC N, TUPPER G B, VIOLLIER R D. Unifification of dark matter and dark energy: The inhomogeneous chaplygin gas[J].Phys Lett, 2002, B535: 17-21.
BENTO M C, BERTOLAMI O, SEN A A. Generalized Chaplygin gas, accelerated expansion and dark energy matter unifification[J]. Phys Rev, 2002, D66: 043507.
LI M. A model of holographic dark energy[J]. Physics Letters B, 2004, 603(1/2): 1-5.
CHEVALLIER M, POLARSKI D. Accelerating universes with scaling dark matter[J]. Int J Mod Phys, 2001, D10: 213-224.
LINDER E V. Exploring the expansion history of the universe[J]. Phys Rev Lett, 2003, 90: 091301.
HUTERER D, TURNER M S. Prospects for probing the dark energy via supernova distance measurements[J]. Phys Rev, 1999, D60: 081301.
JASSAL H K , BAGLA J S, PADMANABHAN T. WMAP constraints on low redshift evolution of dark energy[J]. Mon Not Roy Astron Soc, 2005, 356: L11-L16.
BUCHDAHL H A. Non-linear lagrangians and cosmological theory[J]. Mon Not Roy Astron Soc, 1970, 150: 1.
CARROLL S M, DUVVURI V, TRODDEN M, et al. Is cosmic speed-up due to new gravitational physics?[J]. Phys Rev, 1970, D70: 043528.
SOTIRIOU T P, FARAONI V. f(R) theories of gravity[J]. Rev Mod Phys, 2010, 82: 451-497.
de FELICE A, TSUJIKAWA S. f(R) theories[J]. Living Rev Rel, 2010, 13: 3.
MILGROM M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis[J]. Astrophys J, 1983, 270: 365-370.
BEKENSTEIN J D. Relativistic gravitation theory for the MOND paradigm[J]. Phys Rev, 2004, D70: 083509.
DVALI G R, GABADADZE G, PORRATI M. 4-D gravity on a brane in 5-D Minkowski space[J]. Phys Lett, 2000, B485: 208-214.
BRANS C, DICKE R H. Mach’s principle and a relativistic theory of gravitation[J]. Phys Rev, 1961, 124(3): 925-935.
AMENDOLA L. Scaling solutions in general nonminimal coupling theories[J]. Phys Rev, 1999, D60: 043501.
ZWIEBACH B. Curvature squared terms and string theories[J]. Phys Lett, 1985, 156B: 315-317.
NOJIRI S, ODINTSOV S D, SASAKI M. Gauss-Bonnet dark energy[J]. Phys Rev, 2005, D71: 123509.
LOVELOCK D. The Einstein tensor and its generalizations [J]. J Math Phys, 1971, 12: 498-501.
HORAVA P. Quantum gravity at a lifshitz point[J]. Phys Rev, 2009, D79: 084008.
BENGOCHEA G R, FERRARO R. Dark torsion as the cosmic speed-up [J]. Phys Rev, 2009, D79: 124019.
LINDER E V. Einstein’s other gravity and the acceleration of the Universe [J]. Phys Rev, 2010, D81: 127301.
MANNHEIM P D. Alternatives to dark matter and dark energy[J]. Prog Part Nucl Phys, 2006, 56: 340-445.
WEINBERG D H, MORTONSON M J, EISENSTEIN D J, et al. Observational probes of cosmic acceleration[J]. Phys Rept, 2013, 530: 87-255.
COLLESS M, PETERSON B, JACKSON C, et al. The 2dF galaxy redshift survey: Final data release (2003)[EB/OL]. https://arxiv.org/abs/0306581https://arxiv.org/abs/0306581.
YORK D G. The Sloan digital sky survey: Technical summary[J]. Astron J, 2000, 120: 1579-1587.
BEUTLER F, BLAKE C, COLLESS M, et al. The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant [J]. Mon Not Roy Astron Soc, 2011, 416: 3017-3032.
DRINKWATER M J, JUREK R J, BLAKE C, et al. The wigglez dark energy survey: Survey design and first data release[J].Mon Not Roy Astron Soc, 2010, 401: 1429-1452.
GONG Y, LIU X, CAO Y, et al. Cosmology from the Chinese Space Station Optical Survey (CSS-OS)[J]. Astrophys J, 2019, 883: 203.
FREEDMAN W L, MADORE B F. The Hubble constant [J]. Ann Rev Astron Astrophys, 2010, 48: 673-710.
FRIEMAN J, TURNER M, HUTERER D. Dark energy and the accelerating Universe [J]. Ann Rev Astron Astrophys, 2008, 46: 385-432.
LEAVITT H S. 1777 variables in the Magellanic Clouds[J]. Harvard Obs Annals, 1908, 60: 87-108.
FREEDMAN W L, MADORE B F, HATT D, et al. The Carnegie-Chicago Hubble program. Ⅷ. an independent determination of the Hubble constant based on the tip of the red giant branch[J]. The Astrophysical Journal, 2019, 882: 34.
RIESS A G, CASERTANO S, YUAN W, et al. Large Magellanic Cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM[J]. Astrophys J, 2019, 876:85.
TREU T, MARSHALL P J. Time delay cosmography[J]. Astron Astrophys Rev, 2016, 24: 11.
SUYU S H, BONVIN V, COURBIN F, et al. H0LiCOW =e. H0 Lenses in COSMOGRAIL’s Wellspring: program overview[J]. Mon Not Roy Astron Soc, 2017: 468: 2590-2604.
WONG K C, SUYU S H, CHEN G C F, et al. H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes[J]. Monthly Notices of the Royal Astronomical Society, 2019, 498: 1.
HINSHAW G, LARSON D, KOMATSU E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results[J]. Astrophys J Suppl, 2013,208:19.
AGHANIM N, AGHANIM N, AKRAMI Y, et al. Planck 2018 results. Ⅵ. Cosmological parameters [J]. Astron Astrophys, 2020,641:A6.
AUBOURG R, BAILEY S, BAUTISTA J E, et al. Cosmological implications of baryon acoustic oscillation measurements [J]. Phys Rev, 2015, D92: 123516.
MACAULAY E, NICHOL R C, BACON D, et al. First cosmological results using type Ia supernovae from the dark energy survey: Measurement of the Hubble constant [J]. Mon Not Roy Astron Soc, 2019, 486: 2184-2196.
ABBOTT B P, ABBOTT D, ACERNESE F, et al. A gravitational-wave standard siren measurement of the Hubble constant [J]. Nature, 2017, 551: 85-88.
ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2013 results. XVI. Cosmological parameters[J]. Astron Astrophys, 2014, 571: A16.
ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2015 results. Ⅷ. Cosmological parameters[J]. Astron Astrophys, 2016, 594: A13.
BACON D J, BATTYE R A, BULL P, et al. Cosmology with phase 1 of the square kilometer array: Red Book 2018: Technical specifications and performance forecasts [J]. Pub Astron Soc Austral, 2018, 37: e007.
SCHUTZ B F. Determining the Hubble constant from gravitational wave observations [J]. Nature, 1986, 323: 310-311.
SATHYAPRAKASH B,ABERNATHY M,ACERNESE F, et al. Scientific potential of Einstein Telescope [EB/OL]. https://arxiv.org/abs/1108.1423https://arxiv.org/abs/1108.1423.
SEOANE P A, AOUDIA S, AUDLEY H, et al. The gravitational universe[EB/OL]. https://arxiv.org/abs/1305.5720https://arxiv.org/abs/1305.5720.
HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. Natl Sci Rev, 2017, 4: 685-686.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quant Grav, 2016, 33: 035010.
ZHANG X N, WANG L F, ZHANG J F, et al. Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope [J]. Phys Rev, 2019, D99: 063510.
WANG L F, ZHANG X N, ZHANG J F, et al. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology[J]. Phys Lett, 2018, B782: 87-93.
WANG L F, ZHAO Z W, ZHANG J F, et al. A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin[EB/OL]. https://arxiv.org/abs/1907.01838https://arxiv.org/abs/1907.01838.
FENG W F, WANG H T, HU X C, et al. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin[J]. Phys Rev, 2019, D99: 123002.
WANG H T, JINAG Z, SESANA A, et al., Science with the TianQin observatory: Preliminary results on massive black hole binaries[J]. Phys Rev, 2019, D100: 043003.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构