天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
蒋贇(1986年生),男;研究方向:粒子物理、粒子宇宙学、引力波物理;E-mail:jiangyun5@sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-18,
收稿日期:2020-11-14,
录用日期:2020-11-30
扫 描 看 全 文
蒋贇,梁正程,胡一鸣等.随机引力波背景及天琴探测[J].中山大学学报(自然科学版),2021,60(01):53-61.
JIANG Yun,LIANG Zhengcheng,HU Yiming,et al.Stochastic backgrounds of gravitational wave and the detectability at TainQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):53-61.
蒋贇,梁正程,胡一鸣等.随机引力波背景及天琴探测[J].中山大学学报(自然科学版),2021,60(01):53-61. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B135.
JIANG Yun,LIANG Zhengcheng,HU Yiming,et al.Stochastic backgrounds of gravitational wave and the detectability at TainQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):53-61. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B135.
在毫赫兹频段附近存在着种类丰富的随机引力波源,主要来自原初宇宙和早期宇宙演化的过程, 以及晚期宇宙各种天体物理过程产生的引力波的非相干叠加。天琴等空间引力波探测器在毫赫兹频段具有最好的灵敏度,因此空间引力波探测将帮助我们深入探知宇宙起源及其演化的细节;也有望成为探查超标准模型新物理的独特而有效的途径。本文将介绍多种随机引力波背景的产生机理以及简单评估天琴对随机引力波背景的探测能力。
Near the milli-Hertz band there are stochastic gravitational wave background (SGWB) that can be generated from numerous sources, such as the primordial universe and the incoherent superposition of gravitational waves from astronomical sources. Given the strongest detectability for the SGWB at the order of the milli-Hertz frequencies, space-borne detectors of gravitational waves (e.g. TianQin) will help us to explore the origin of our universe, and it may also become a unique and efficient approach for probing new physics beyond the Standard Model. In this article we will discuss the production mechanism for various SGWBs and briefly assess the detectability for the SGWB at the TianQin.
引力波随机引力波背景宇宙演化天琴计划
gravitational wavesstochastic backgrounds of gravitational wavesuniverse evolutionTianQin
ABBOTT B, ABBOTT R,ABBOTT T, et al.GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs [J]. Physical Review X, 2019, 9: 031040.
ABBOTT R,ABBOTT T, ABRAHAM S, et al.GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run [EB/OL].https://arxiv.org/pdf/2010.14527.pdfhttps://arxiv.org/pdf/2010.14527.pdf.
AAD G,ABAJYAN T, ABBOTT B ,et al(ATLAS Collaboration).Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC [J]. Physics Letters B, 2012, 716: 1-29.
CHATRCHYAN S, KHACHATRYAN V,SIRUNYAN A, et al(CMS Collaboration). Observation of a New Boson at a mass of 125 GeV with the CMS experiment at the LHC [J]. Physics Letters B, 2012, 716: 30-61.
AAD G,ABAJYAN T, ABBOTT B , et al(ATLAS and CMS Collaborations).Combined measurement of the higgs boson mass in pp collisions at <math id="M50"><mroot><mrow><mi>s</mi></mrow><mrow/></mroot><mo>=</mo><mn mathvariant="normal">7</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49487858&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49487843&type=9.567333223.38666677 and 8 TeV with the ATLAS and CMS experiments [J]. Physical Review Letters, 2015, 114: 191803.
MEI J W,BAI Y Z, BAO J H,et al.The TianQin project: current progress on science and technology, progress of theoretical and experimental physics [J].2020,accepted.
AGHANIM N, (Planck)et al. Planck 2018 results. VI. cosmological parameters [J]. Astronomy & Astrophysics, 2020, 641: A6.
ALLEN B, ROMANO J D. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities [J]. Physical Review D, 1999, 59: 102001.
ROMANO J D, CORNISH N J. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment [J]. Living Reviews in Relativity, 2017, 20: 2.
WEINBERG S. Cosmology [M]. Oxford University Press, 2008.
MAGGIORE M. Gravitational waves volume 2: astrophysics and cosmology [M]. Oxford University Press, 2018.
CAPRINI C, FIGUEROA D G. Cosmological Backgrounds of gravitational waves [J]. Classical and Quantum Gravity, 2018: 35, 163001.
CLESSE S, GARCIA-BELLIDO J. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies [J]. Physical Review D, 2015, 92: 023524.
PHINNEY E S. A Practical theorem on gravitational wave backgrounds [EB/OL].https://arxiv.org/pdf/astro-ph/0108028.pdfhttps://arxiv.org/pdf/astro-ph/0108028.pdf.
BETHKE L, FIGUEROA D G, RAJANTIE A. Anisotropies in the gravitational wave background from preheating [J]. Physical Review Letters, 2013, 111: 011301.
VACHASPATI T, VILENKIN A. Gravitational radiation from cosmic strings [J]. Physical Review D, 1985, 31: 3052.
KOSOWSKY A, TURNER M S. Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions [J]. Physical Review D, 1993, 47: 4372.
HINDMARSH M, HUBER S J, RUMMUKAINEN K, et al. Numerical simulations of acoustically generated gravitational waves at a first order phase transition [J]. Physical Review D, 2015, 92: 123009.
KONSTANDIN T. Gravitational radiation from a bulk flow model [J]. Journal of Cosmology and Astroparticle Physics, 2018,3: 047.
HINDMARSH M. Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe [J]. Physical Review Letters, 2018, 120: 071301.
HINDMARSH M, HIJAZI M. Gravitational waves from first order cosmological phase transitions in the Sound Shell Model [J]. Journal of Cosmology and Astroparticle Physics, 2019, 12: 062.
LIANG Z, HU Y, JIANG Y. Science with TianQin: preliminary results on stochastic gravitational wave background [EB/OL]. In preparation.
VILENKIN A, SHELLARD E P S. Cosmic strings and other topological defects [M]. Cambridge University Press, 1995.
FIGUEROA D G, HINDMARSH M, URRESTILLA J. Irreducible background of gravitational waves from a cosmic defect network: update and comparison of numerical techniques [EB/OL]. https://arxiv.org/pdf/2007.03337.pdfhttps://arxiv.org/pdf/2007.03337.pdf.
FIGUEROA D G, HINDMARSH M, URRESTILLA J. Exact scale-invariant background of gravitational waves from cosmic defects [J]. Physical Review Letters, 2013, 110: 101302.
AUCLAIR P,BLANCO-PILLADO J, DFIGUERO A,et al. Probing the gravitational wave background from cosmic strings with LISA [J]. Journal of Cosmology and Astroparticle Physics, 2020, 4: 034.
BLANCO-PILLADO J J , OLUM K D. Stochastic gravitational wave background from smoothed cosmic string loops [J]. Physical Review D, 2017, 96: 104046.
KOROL V, ROSSI E M, et al. Prospects for detection of detached double white dwarf binaries with Gaia [J]. Monthly Notices of the Royal Astrophysical Society,2017, 470: 1894.
BLANCO-PILLADO J J, OLUM K D, SHLAER B. The number of cosmic string loops [J]. Physical Review D, 2014, 89: 023512.
ROBSON T, CORNISH N J, LIU C. The construction and use of LISA sensitivity curves [J]. Classical and Quantum Gravity, 2019, 36: 105011.
HUANG S, HU Y, KOROL V, et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries [J]. Physical Review D, 2020, 102:063021.
DVORKIN I, BARAUSSE E. The nightmare scenario: measuring the stochastic gravitational-wave background from stalling massive black-hole binaries with pulsar-timing arrays [J].Monthly Notices of the Royal Astrophysical Society, 2017, 470: 4547.
KROLAK A, TINTO M, VALLISNERI M. Optimal filtering of the LISA data [J]. Physical Review D, 2004, 70: 022003.
ROBINSON E L, ROMANO J D, VECCHIO A. Search for a stochastic gravitational-wave signal in the second round of the Mock LISA data challenges [J]. Classical and Quantum Gravity, 2008, 25: 184019.
THRANE E, ROMANO J D. Sensitivity curves for searches for gravitational-wave backgrounds [J]. Physical Review D, 2013,88: 124032.
AMARO-SEOANE P,AUDLEY H, BABAK S, et al(LISA).Laser interferometer space antenna [EB/OL]. https://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdfhttps://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdf.
ADE P A R,AGHANIM N, ARMITAGE-CAPLAN C ,et al (Planck). Planck 2013 results. XXV. searches for cosmic strings and other topological defects [J]. Astronomy & Astrophysics, 2014, 571: A25.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构