1.天琴计划”教育部重点实验室,中山大学天琴中心,天琴前沿科学中心,国家航天局引力波 研究中心,广东 珠海 519082
2.中山大学物理与天文学院,广东 珠海 519082
3.华中科技大学物理学院,湖北 武汉 430074
谭柏轩(1981年生),男; 研究方向:高能天体物理;E-mail:tanbxuan@sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-14,
录用日期:2020-12-21
扫 描 看 全 文
谭柏轩,区子维,刘帅等.恒星级双黑洞旋近及其探测[J].中山大学学报(自然科学版),2021,60(01):41-52.
TAM Pakhin,OU Ziwei,LIU Shuai,et al.Stellar-mass binary black holes: Inspirals and their detection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):41-52.
谭柏轩,区子维,刘帅等.恒星级双黑洞旋近及其探测[J].中山大学学报(自然科学版),2021,60(01):41-52. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B134.
TAM Pakhin,OU Ziwei,LIU Shuai,et al.Stellar-mass binary black holes: Inspirals and their detection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):41-52. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B134.
在经历恒星演化后,大质量恒星最终会形成中子星或黑洞等致密星。此外,宇宙早期的局部密度涨落也可能形成恒星级原初黑洞。从宇宙诞生至今,这些恒星级黑洞可以通过不同的机制形成双星,包括协同演化模型和动力学相互作用模型。在地面引力波探测器实现探测之前,电磁波观测到的恒星级黑洞质量较小,即不超过15个太阳质量左右。LIGO/Virgo对GW150914等恒星级双黑洞并合产生的引力波信号的探测,将这一领域引入到相关学者的关注视野中,由此激发了大量空间引力波探测对恒星级双黑洞旋近等信号的研究。通过当前地面引力波探测结果的统计,可以预言:天琴在五年的观测时间内,可以探测到数起到几十起的恒星级双黑洞旋近事件。由于长时间的积分,这些空间引力波信号可以精确测量一些参数,如并合时间精度预期可达约1 s水平,空间定位能力可达约1 deg
2
水平,等等。因此,恒星级双黑洞旋近为多波段引力波探测提供了极佳的天文实验室。
According to stellar evolution theory, a massive star will eventually become a compact object such as a neutron star or a black hole. On the other hand, local density fluctuations in the early Universe could also form primordial black holes of stellar mass. Since the dawn of the Universe, stellar-mass black holes (SBHs) can come together to form binaries through mechanisms such as coevolution and dynamical processes. Before ground-based gravitational wave (GW) detectors made their first successful detections, the masses of SBHs had been measured by electromagnetic waves only, and never exceeded around 15 solar masses. The LIGO/Virgo detection of GWs from binary SBH mergers has drawn the attention of many scientists, in particular, the GW signals resulting from the inspirals of binary SBHs should be detectable by space-borne GW detectors. Based on the number of GW events detected by ground-based detectors, it is expected that TianQin will be able to detect a few to dozens of GW events related to inspirals of binary SBHs. Given the long expected duration for each inspiral event, such signals can help measure parameters including the expected merger time (down to ~1 second) and the exact location of the SBH (down to 1 square degree). The inspiral through merging of binary SBHs will provide excellent astrophysical probes for multi-frequency GW observations.
黑洞引力波恒星
black holegravitational wavestar
KURANOV A G, POSTNOV K A. Neutron stars in globular clusters: Formation and observational manifestations[J]. Astronomy Letters,2006, 32: 393-405.
PETROVICH C, ANTONINI F. Greatly enhanced merger rates of compact-object binaries in non-spherical nuclear star clusters [J]. The Astrophysical Journal,2017, 846: 146-167.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters,2016, 116: 061102.
ABBOTT A, ABBOTT R, ABBOTT T D, et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs [J]. Physical Review X,2010, 9: 1040-1088.
ABBOTT A, ABBOTT R, ABBOTT T D, et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run[EB/OL]. https://arxiv.org/abs/2010.14537https://arxiv.org/abs/2010.14537.
ABBOTT R, ABBOTT T, ABBOTT S, et al. GW190521: a binary black hole merger with a total mass of 150M☉ [J]. Physical Review Letters,2020, 125: 101102.
FARR W M, SRAVAN N, CANTRELL A, et al. The mass distribution of stellar-mass black holes [J]. The Astrophysical Journal, 2011, 741: 103-158.
COLPI M, SESANA A. Gravitational wave sources in the era of multi-band gravitational wave astronomy[EB/OL]. https://arxiv.org/abs/1610.05309https://arxiv.org/abs/1610.05309.
BELCZYNSKI K, DOMINIK M, BULIK T, et al. The effect of metallicity on the detection prospects for gravitational waves [J]. The Astrophysical Journal Letters,2010, 15: 138-141.
SPERA M, MAPELLI M,BRESSAN A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks [J]. Monthly Notices of the Royal Astronomical Society,2015,451: 4086-4103.
BELCZYNSKI K, HOLZ D E, BULIK T, et al. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range[J]. Nature,2016, 534: 512-515.
FENG J L. Dark matter candidates from particle physics and methods of detection[J]. Annual Review of Astronomy and Astrophysics,2010, 48: 495-545.
BELCZYNSKI K, HEGER A, GLADYSZ W, et al. The effect of pair-instability mass loss on black-hole mergers[J]. Astronomy and Astrophysics,2016, 594: 97-106.
BARACK L, CARDOSO V, NISSANKE S, et al. Black holes, gravitational waves and fundamental physics: a roadmap [J]. Classical and Quantum Gravity,2019, 36: 3001-3178.
POSTNOV K A, YUNGELSON L R. The evolution of compact binary star systems[J]. Living Reviews in Relativity,2014, 17: 168.
BELCZYNSKI K, HOLZ D E, BULIK T, et al. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range [J]. Nature, 2016, 534: 512-515.
HARTWIG T, VOLONTERI M, BROMM V, et al. Gravitational waves from the remnants of the first stars [J]. Monthly Notices of the Royal Astronomical Society,2016, 460: 74-78.
KUSHNIR D, ZALDARRIAGA M, KOLLMEIER J A, et al. GW150914: spin-based constraints on the merger time of the progen- itor system[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462: 844-849.
MARCHANT P, LANGER N, PODSIADLOWSKI P, et al. A new route towards merging massive black holes[J]. Astronomy and Astrophysics, 2016, 588: 50-62.
SANA H, de MINK S E, de KOTER A, et al. Binary interaction dominates the evolution of massive stars[J]. Science, 2012, 337: 444-452.
LANGER N. Presupernova evolution of massive single and binary stars[J]. Annual Review of Astronomy and Astrophysics, 2012, 50: 107-164.
ABADIE J, ABBOTT R, ABERNATHY M, et al. TOPICAL review: Predictions for the rates of com- pact binary coalescences observable by ground-based gravitational-wave detectors [J]. Classical and Quantum Gravity, 2010, 27: 3001-3020.
VOSS R, TAURIS T M. Galactic distribution of merging neutron stars and black holes - prospects for short gamma-ray burst progenitors and LIGO/VIRGO [J]. Monthly Notices of the Royal Astronomical Society, 2003, 342: 1169-1184.
BELCZYNSKI K, BULIK T, FRYER C L, et al. On the maximum mass of stellar black holes[J]. The Astrophysical Journal, 2010, 714: 1217-1226.
STEVENSON S, VIGNA-GÓMEZ A, MANDEL I, et al. Formation of the first three gravitational- wave observations through isolated binary evolution[J]. Nature Communications, 2017, 8: 14906-14912.
MANDEL I, de MINK S E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries [J]. Monthly Notices of the Royal Astronomical Society, 2016, 458: 2634–2647.
RODRIGUEZ C L, CHATTERJEE S, RASIO F A. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution[J]. Physical Review D, 2016, 93: 4029-4050.
MILLER M C, LAUBURG V M. Mergers of stellar-mass black holes in nuclear star clusters [J]. The Astrophysical Journal,2009, 692: 917-923.
BENACQUISTA M J, DOWNING J M B. Relativistic binaries in globular clusters [J]. Living Reviews in Relativity,2013, 16: 4-91.
HARRIS W E, HARRIS G L, HUDSON M J. Dark matter halos in galaxies and globular cluster populations. ii. metallicity and morphology [J]. The Astrophysical Journal,2015, 806: 36-49.
PARK D, KIM C, LEE H M, et al. Black hole binaries dynamically formed in globular clusters [J]. Monthly Notices of the Royal Astronomical Society,2017, 469: 4665-4674.
ASKAR A, SZKUDLAREK M, GONDEK-ROSIŃSKA D, et al. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters[J]. Monthly Notices of the Royal Astronomical Society,2017, 464: 36-40.
BANERJEE S. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation [J]. Monthly Notices of the Royal Astronomical Society,2017, 467: 524-539.
KROUPA P. On the variation of the initial mass function [J]. Monthly Notices of the Royal Astronomical Society, 2001, 322: 231-246.
O’LEARY R M, KOCSIS B, LOEB A. Gravitational waves from scattering of stellar-mass black holes in galactic nuclei [J]. Monthly Notices of the Royal Astronomical Society,2009, 395: 2127-2146.
BELCZYNSKI K, ASKAR A, ARCA-SEDDA M, et al. The origin of the first neutron star - neutron star merger [J]. Astronomy and Astrophysics,2018, 615: 91-103.
HOANG B M, NAOZ S, KOCSIS B, et al. Black hole mergers in galactic nuclei induced by the eccentric Kozai-Lidov effect [J]. The Astrophysical Journal,2018, 856: 140-149.
GNEDIN O Y, OSTRIKER J P, TREMAINE S. Co-evolution of galactic nuclei and globular cluster systems[J]. The Astrophysical Journal,2014, 785: 71-85.
ARCA-SEDDA M, CAPUZZO-DOLCETTA R, ANTONINI F, et al. Henize 2-10: the ongoing formation of a nuclear star cluster around a massive black hole [J]. The Astrophysical Journal,2015, 806: 220-233.
ANTONINIAND F, PERETS H B. Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica [J]. The Astrophysical Journal,2012, 757: 27-41.
BELCZYNSKI K, RYU T, PERNA R, et al. On the likelihood of detecting gravitational waves from population Ⅲ compact object binaries [J]. Monthly Notices of the Royal Astronomical Society,2017, 471: 4702-4721.
TAGAWA H, UMEMURA M. Merger of multiple accreting black holes concordant with gravitational-wave events[J]. The Astrophysical Journal,2018, 856: 47-54.
SILSBEE K, TREMAINE S. Lidov-Kozai cycles with gravitational radiation: merging black holes in isolated triple systems[J]. The Astrophysical Journal,2017, 836: 39-52.
ANTONINI F, TOONEN S, HAMERS A S. Binary black hole mergers from field triples: properties, rates, and the impact of stellar evolution [J]. The Astrophysical Journal,2017, 841: 77-86.
RODRIGUEZ C L, ANTONINI F. A triple origin for the heavy and low- spin binary black holes detected by LIGO/VIRGO [J]. The Astrophysical Journal,2018, 863: 7-24.
FANG X, THOMPSON T A, HIRATA C M. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae [J]. Monthly Notices of the Royal Astronomical Society,2018, 476: 4234–4262.
BRANDT T D. Constraints on MACHO dark matter from compact stellar systems in ultra-faint dwarf galaxies [J]. The Astrophysical Journal Letters,2016, 824: 31-36.
ANTONINI F, RODRIGUEZ C L, PETROVICH C, et al. Precessional dynamics of black hole triples: binary mergers with near-zero effective spin [J]. Monthly Notices of the Royal Astronomical Society,2018, 480: 58-62.
BELCZYNSKI K, KLENCKI J, FIELDS C E,et al. The evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates of LIGO/Virgo binary black holes [J]. Astronomy and Astrophysics,2020, 636: 40-144.
GARCIA-BELLIDO J, CLESSE S, FLEURY P. LIGO Lo(g)normal MACHO: primordial black holes survive SN lensing constraints[EB/OL].https://arxiv.org/abs/ 1712.06574https://arxiv.org/abs/1712.06574.
CLESSE S. GARCÍA-BELLIDO J. Seven hints for primordial black hole dark matter [J]. Physics of the Dark Universe, 2018, 22: 137-146.
SASAKI M, SUYAMA T, TANAKA T, et al. Primordial black holes-perspectives in gravitational wave astronomy [J]. Classical and Quantum Gravity,2018, 35: 3001-3087.
GREEN A M. Primordial black holes: sirens of the early universe[EB/OL].https://arxiv.org/abs/1403.1198https://arxiv.org/abs/1403.1198.
BIRD S, CHOLIS I, MUÑOZ J B, et al. Did LIGO detect dark matter[J]. Physical Review Letters, 2016, 116: 1301-1305.
CARR B, KÜHNEL F, SANDSTAD M. Primordial black holes as dark matter [J]. Physical Review D,2016, 94: 3504-3535.
ALCOCK C, ALLSMAN R A, ALVES D R, et al. MACHO Project limits on black hole dark matter in the 1-30 msolar range [J]. The Astrophysical Journal Letters,2001, 550: 169-172.
TISSERAND P, Le GUILLOU L, AFONSO C, et al. Limits on the macho content of the galactic halo from the EROS-2 survey of the magellanic clouds [J]. Astronomy and Astrophysics,2007, 469: 387-404.
CARR B J. Pregalactic black hole accretion and the thermal history of the universe [J]. Monthly Notices of the Royal Astronomical Society,1981, 194: 639-668.
QUINN D P, WILKINSON M I, IRWIN M J, et al. On the reported death of the MACHO era [J].Monthly Notices of the Royal Astronomical Society,2009, 396: 11-15.
LI T S, SIMON J D, DRLICA-WAGNER A, et al(Collaboration). DES farthest neighbor: the distant milky way satellite eridanus ii [J]. The Astrophysical Journal,2017, 838: 8-23.
BRANDT T D. Constraints on MACHO dark matter from compact stellar systems in ultra-faint dwarf galaxies [J]. The Astrophysical Journal Letters,2016, 824: 31-36.
KOUSHIAPPAS S M, LOEB A. Dynamics of dwarf galaxies disfavor stellar-mass black holes as dark matter [J]. Physical Review Letters,2017, 119: 1102-1106.
BERTONE G, HOOPER D. History of dark matter [J]. Reviews of Modern Physics, 2018, 90: 45002-45087.
KAVANAGH B J, GAGGERO D, BERTONE G. Merger rate of a subdominant population of primordial black holes [J]. Physical Review D, 2018, 98: 3536-3550.
ALI-HAÏMOUD Y. Correlation function of high-threshold regions and application to the initial small-scale clustering of primordial black holes [J]. Physical Review Letters, 2018, 121: 1304-1308.
SESANA A. Prospects for multiband gravitational-wave astronomy after GW150914 [J]. Physical Review Letters, 2016, 116: 231102.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector [J]. Classical and Quantum Gravity, 2016, 33: 5010-5041.
NISHIZAWA A, BERTI E, KLEIN A, et al. LISA eccentricity measurements as tracers of binary black hole formation[J]. Physical Review D, 2016, 94: 4020-4032.
MARTYNOV D, MIAO H, YANG H, et al. Exploring the sensitivity of gravitational wave detectors to neutron star physics[J]. Physical Review D, 2019, 99: 2004-2020.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170817: measurements of neutron star radii and equation of state[J]. Physical Review Letters, 2018, 121: 1101-1110.
MARGALIT B, METZGER B D. The Multi-messenger Matrix: the future of neutron star merger constraints on the nuclear equation of state [J]. The Astrophysical Journal Letters, 2019, 880: 15-22.
HU Y M, MEI J, LUO J. Science prospects for space-borne gravitational-wave missions [J]. National Science Review, 2017, 4: 683-684.
SESANA A. Multi-band gravitational wave astronomy: science with joint space- and ground-based observations of black hole binaries [J]. Journal of Physics: Conference Series, 2017, 840: 012018.
NISHIZAWA A, SESANA A, BERTI E, et al. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements[J]. Monthly Notices of the Royal Astronomical Society, 2017, 465: 4375-4380.
LIU S, HU Y M, ZHANG J D, et al. Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes[J]. Physical Review D, 2020, 101: 3027-3046.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构