中国空间技术研究院航天东方红卫星有限公司,北京100094
张立华(1970年生),男;研究方向:航天器总体设计等;E-mail: zlh70717@sina.com
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-14,
录用日期:2020-11-28
扫 描 看 全 文
张立华,黎明,高永新等.空间引力波探测航天器系统及平台技术[J].中山大学学报(自然科学版),2021,60(01):129-137.
ZHANG Lihua,LI Ming,GAO Yongxin,et al.The spacecraft system and platform technologies for gravitational wave detection in space[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):129-137.
张立华,黎明,高永新等.空间引力波探测航天器系统及平台技术[J].中山大学学报(自然科学版),2021,60(01):129-137. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B133.
ZHANG Lihua,LI Ming,GAO Yongxin,et al.The spacecraft system and platform technologies for gravitational wave detection in space[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):129-137. DOI: 10.13471/j.cnki.acta.snus.2020.11.14.2020B133.
引力波探测是当代物理学最重要的前沿领域之一,与引力波的地面探测相比,引力波的空间探测能够探测更丰富的波源和更遥远的目标,具有重大的科学价值。空间引力波探测带来了空前的技术挑战,对航天器系统和平台提出了极高的技术指标要求,传统的卫星平台难以满足任务需求,必须设计开发新的平台,并突破诸多关键技术。本文对空间引力波探测航天器总体和平台设计面临的挑战、主要的设计约束条件进行了分析,提出了天琴引力波探测航天器的总体方案设想和初步的构型布局方案,对航天器平台所涉及的关键技术进行了梳理,并对后续解决途径提出了建议。
The detection of gravitational wave is a leading edge scientific research area in contemporary physics. Compared to the detection on the ground, the space based gravitational wave detection can explore richer gravitational wave sources and more distant objects, and so is considered to be of great scientific value. The detection of gravitational wave in space brings great technical challenges and presents demanding technical requirements for the spacecraft system and platform. Traditional platforms can not meet the mission requirements. The ultra-quiet and ultra-stable platform has to be developed. A series of critical technologies need to be broken through. This paper analyzes the technical challenges and constraints faced by the spacecraft system and platform for gravitational wave detection. The preliminary spacecraft system design concept for TianQin gravitational wave detection mission, including spacecraft configuration and layout, is proposed. The critical technologies for spacecraft platform are also analyzed and solution approaches are suggested.
空间引力波探测航天器总体航天器平台关键技术
space based gravitational wave detectionspacecraft systemspacecraft platformcritical technologies
HAMMESDAHR A. LISA mission study overview[J]. Class Quantum Grav,2001,18:4045–4051.
DANZMANN K. LISA — An ESA cornerstone mission for the detection and observation of gravitational waves[J]. Adv Space Res,2003, 32:1233-1242.
LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010.
HU W R,WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. Natl Sci Rev,2017(4):685-686.
HU X C, LI X H, WANG Y, et al. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity, 2018,35(9):095008.
STEBBINS R T. Recent progress at NASA in LISA formulation and technology development[J]. Class Quantum Grav, 2008, 25:114050.
ZIEMER J. Micro thrust Propulsion for the LISA Mission[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 12-14, 2004.
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: New LISA pathfinder results down to 20 μHz [J]. Physical Review Letters, 2018, 120 (6): 061101.
王晓宇,祁首冰,赵汉卿. 天琴奏响,空间引力波探测技术验证再传佳音[J].国际太空,2020(7):33-37.
WANG X Y, QI S B, ZHAO H Q, et al. TianQin , Good news for Space-borne gravitational wave detection technology demonstration[J]. Space International,2020(7):33-37.
LUO J,TU L C, ZHOU Z B, et al. The first round results from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, DOI: 10.1088/1361-6382/aba66ahttp://dx.doi.org/10.1088/1361-6382/aba66a.
罗子人,张 敏,靳 刚,等.中国空间引力波探测“太极计划”及“太极1号”在轨测试[J].深空探测学报,2020,7(1): 3-10.
LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10.
0
浏览量
2
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构