天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
夏冰(1996年),男;研究方向:空间柔性支撑结构;E-mail:xiab6@mail2.sysu.edu.cn
丁延卫(1976年),男;研究方向:重力/引力卫星总体设计与机热一体化;E-mail: dingyw3@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-11,
录用日期:2020-12-29
扫 描 看 全 文
夏冰,陈厚源,汪一萍等.空间引力波探测卫星外热流环境及其热控设计[J].中山大学学报(自然科学版),2021,60(01):138-145.
XIA Bing,CHEN Houyuan,WANG Yiping,et al.External heat flux and thermal control design of space gravitational wave detection satellite[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):138-145.
夏冰,陈厚源,汪一萍等.空间引力波探测卫星外热流环境及其热控设计[J].中山大学学报(自然科学版),2021,60(01):138-145. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131.
XIA Bing,CHEN Houyuan,WANG Yiping,et al.External heat flux and thermal control design of space gravitational wave detection satellite[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):138-145. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131.
轨道外热流是影响空间引力波探测卫星的重要因素之一。总结了日心轨道引力波探测卫星和地心轨道引力波探测卫星的
<math id="M1"><mi mathvariant="normal">β</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49488077&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49488056&type=
1.94733334
2.87866688
角和外热流变化,分析了外热流的变化特征。引力波卫星采用以被动热控为主,辅以主动热控的热设计原则,对整星和关键载荷(如空间望远镜)进行热设计,同时采取柔性支撑结构解决结构热变形问题,保证子结构尺寸的稳定性,最后介绍了空间引力波探测卫星热仿真分析。
The external heat flux is one of the important factors affecting the space gravitational wave detection satellite. In this paper, the β angle and external heat flux of the heliocentric and geocentric gravitational wave detection satellites are summarized, and the variation characteristics of the external heat flow are analyzed. The gravitational wave satellite adopts the thermal design principle of passive thermal control, supplemented by active thermal control. The thermal design of the whole satellite and the key payload (e.g. space telescope) is carried out. At the same time, flexible support structure is adopted to solve the thermal deformation problem of the structure to ensure the stability of the substructure. Finally, the thermal simulation of gravitational wave detection satellite is introduced.
空间外热流整星热设计柔性结构热仿真分析
space external heat flowsatellite thermal designflexible structurethermal simulation analysis
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010.
WEISE D, CORDERO J, SCHULD T, et al. A high sensitivity heterodyne interferometer as a possible optical readout for the LISA gravitational reference sensor and its application to technology verification[J]. Journal of Physics: Conference Series, 2009, 154(1). DOI:10. 1088/1742-6596/154/1/012030http://dx.doi.org/10.1088/1742-6596/154/1/012030.
MEN J R, NI W T, WANG G . Design of ASTROD-GW orbit[J]. Chinese Astronomy & Astrophysics, 2010, 34(4):434-446.
苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018.
杜卓林, 江海, 陈少华, 等. 上面级发射中高轨道卫星外热流分析[J]. 宇航学报, 2018, 39(10):1107-1115.
DU Z L, JIANG H, CHEN S H, et al. Analysis of external heat flux of medium-high orbit satellite launched at upper stage [J]. Acta Astronautica, 2018, 39(10):1107-1115.
杨炜平, 李德富, 朱尚龙, 等. 上面级在发射轨道的辐射外热流分析[J]. 航天器环境工程, 2014, 31(1):57-61.
YANG W P, LI D F, ZHU S L, et al. Analysis of radiative external heat flow of upper stage in launch orbit [J]. Spacecraft Environmental Engineering, 2014, 31(1):57-61.
吴晓迪, 凌永顺, 杨明, 等. 卫星红外特性及空间热流对其的影响[J]. 光电工程, 2010, 37(6):58-64.
WU X D, LING Y S, YANG M, et al. Satellite infrared characteristics and the influence of space heat flow on it [J]. Optoelectronic Engineering, 2010, 37(6):58-64.
刘巨. 太阳同步圆轨道空间相机瞬态外热流计算[J]. 中国光学, 2011, 5(2):148-153.
LIU J. Calculation of transient external heat flow of space camera in solar synchronous circular orbit [J]. China Optics, 2011, 5(2):148-153.
LI J L, YAN S Z, CAI R Y. Thermal analysis of composite solar array subjected to space heat flux[J]. Aerospace Science & Technology, 2013. DOI: 10.1016/j.ast.2012.06.010http://dx.doi.org/10.1016/j.ast.2012.06.010.
MORGENROTH L, HONNEN K, HEYS S, et al. Thermal study of laser interferometer space antenna (LISA)[C]//SAE technical paper series—31st International conference on environmental systems,2001.
ALLISON C, DIAZADUAGO M, JAROUX B. SatTherm: A thermal analysis and design tool for small spacecraft[J]. Analytical Chemistry, 2009, 31(11):29-34.
郑浩颖. 天琴卫星的空间外热流分析与隔离控制研究[D]. 广州:中山大学, 2020.
TREFOR E, AXEL H. LISA project internal report number ESTEC Contract No.13631/99/NL/MS, Report No. LI-RP-DS-009— Final technical report of the (Phase A)[R]. Study of the laser interferometer pace Antenna,2000.
张雪峰, 李洪银, 梅健伟. 基于LISA卫星概念的天琴卫星热稳定性估算[R]. 2018.
TRENBERTH K E, FASULLO J T, KIEHL J. Earth's global energy budget[J]. Bulletin of the American Meteorological Society, 2009, 90(3):311-323.
HUMMEL J, RECK R A. A global surface albedo model[J]. Journal of Applied Meteorology, 1979, 18(3):239-253.
PAYNE R E. Albedo of the sea surface[J]. Technical report,1972. 29(5): 959-970.
SONG Z, LIANG S, WANG D, et al. Long-term record of top-of-atmosphere albedo over land generated from AVHRR data[J]. Remote Sensing of Environment, 2018, 211:71-88.
李强, 孙先伟, 林乐天, 等. 近地卫星地球反照系数的一种估计方法[J]. 航天器工程, 2015, 24(3):17-21.
LI Q, SUN X W, LIN L T, et al. An estimation method of earth albedo coefficient of near Earth satellite [J]. Spacecraft Engineering, 2015, 24(3):17-21.
KOPP G, LAWRENCE G, ROTTMAN G. The total irradiance monitor (TIM): Science results[J]. Solar Physics, 2005, 230(1/2):129-139.
殷亚州, 傅伟纯, 卢清荣, 等. 高分七号卫星基于尺寸稳定的整星热设计[J]. 航天器工程,2020, 29(3):82-88.
YIN Y Z, FU W C, LU Q R, et al. Whole satellite’s thermal design based on dimensional stability of Gaofen-7 Satellite [J]. Spacecraft Engineering,2020,29 (3):82-88.
王晓宇, 祁首冰, 赵汉卿. 天琴奏响,空间引力波探测技术验证传来佳音——访天琴一号技术试验卫星总设计师张立华[J]. 国际太空,2020(7):33-37.
WANG X Y, QI S B, ZHAO H Q. Tianqin played , space gravitational wave detection technology verification came good news —— Interview with Chief designer Zhang Lihua of Tianqin 1 Technology Test Satellite [J]. International Space,2020(7):33-37.
DING Y W, ZHANG X M. Gravity exploration satellites-a promising field for small satellite [C] //Small Satellite Technology Conference, 2011.
PEABODY H, MERKOWITZ S. LISA thermal design[J].Classical and Quantum Gravity, 2005, 22(10): S403.
DING Y W, HU L Y, ZHANG X M, et al. Gravity satellites and ultra-quiet and ultra-stable satellite technology[C]// Proceedings of the symposium on the development of high-performance spacecraft and new conceptual spacecraft technology, 2012.
KIM J. Simulation study of a low-low satellite-to-satellite tracking mission[M]. USA: The University of Texas at Austin, 2000:1100-1106.
DRINK M R, FLOBER R, HAAGMANS R, et al. GOCE: ESA’s first earth explorer core mission[J]. Space Sciences Series,2003, 108(1):419-432.
FEHRINGER M, ANDRE G, LAMARRE D G, et al. A jewel in ESA's crown - GOCE and its gravity measurement systems[J]. ESA Bulletin-European Space Agency, 2008,133: 14-23.
RUMMEL R, YI W, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790.
VALENTINI D, VACANCE M, BATTAGLIA D, et al. SAE Technical paper series[C]//SAE international conference on environmental systems, 2006.
EJSM Laplace. EJSM-Laplace assessment study report (Yellow Book)[R]. European Space Agency, 2011.
MCNAMARA P. LISA Pathfinder: First steps to observing gravitational waves from space[C]// APS April Meeting, 2017.
ARMANO M, BENEDEITT M, BOGENSTAHL J, et al. LISA Pathfinder: the experiment and the route to LISA[J]. Classical & Quantum Gravity, 2009, 26(9):1159-1165.
MERKOWITZ S M, CONKEY S, HAILE W B, et al. Structural, thermal, optical and gravitational modelling for LISA[J]. Classical & Quantum Gravity, 2004, 21(5):S603-S610.
0
浏览量
2
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构