纸质出版日期:2021-01-25,
网络出版日期:2021-01-18,
收稿日期:2020-11-11,
录用日期:2021-01-06
扫 描 看 全 文
引用本文
阅读全文PDF
观测表明在正常星系和活动星系核中一般存在一个百万到数十亿太阳质量的超大质量黑洞和大量的恒星级质量黑洞。同时,中等质量黑洞存在的证据也初露端倪。在宇宙形成后的几亿年内,观测发现一些超大质量黑洞就达到了百亿个太阳质量,这些超大质量黑洞的形成和增长过程仍然是一个谜。在星系形成的等级结构模型中,小星系通过不断的并合形成越来越大的星系,其星系中心的黑洞也经历着并合和吸积过程,逐渐形成今天观测到的不同红移处的超大质量黑洞。本文主要对黑洞基本特征、当前主要观测结果、中等质量黑洞候选体、种子黑洞以及超大质量黑洞与星系关系等做一个简单的综述,并对天琴对宇宙中大质量双黑洞的探测能力进行评估。对于这些大质量双黑洞引力波的分析,将可以有效帮助我们认识宇宙中大质量黑洞的特性以及超大质量黑洞的形成和演化历史。
Observations have shown that at the center of most galaxy there is a supermassive black hole of millions to billions solar masses, together with a large amount of stellar mass black holes. At the same time, evidence of the existence of intermediate-mass black holes is also emerging. Within hundreds of millions of years after the formation of the universe, some supermassive black holes reached tens of billions of solar masses. The formation and growth of these supermassive black holes is still a mystery. In the hierarchical structure model of galaxy formation, small galaxies are constantly merging to form larger and larger galaxies, and the black holes at the center of galaxies also undergo a process of merger and accretion, gradually forming supermassive black holes at different redshifts. This article summarizes the basic characteristics of black holes, current observation results, intermediate-mass black hole candidates, seed black holes, and the relationship between supermassive black holes and galaxies. The detection capability with the TianQin observatory is also evaluated. The analysis of the gravitational waves of these massive black hole binaries will greatly help us to understand the characteristics of massive black holes in the universe and the history of formation and evolution of supermassive black holes.
1915年爱因斯坦提出了广义相对论,1916年史瓦西在引力场球对称假设下,得到了第一个广义相对论的精确解,该解中存在一个奇点,奇点外还存在一个视界,一切物质只要落入这一区域,它就会消失的无影无踪,就像一个无底洞,即所谓的“黑洞”。对于史瓦西黑洞(Schwarzschild black hole)而言,视界半径大小RS=2Rg(Rg=GMBH/c2是引力半径,G为万有引力常数,c为光速,MBH为黑洞质量)。对于旋转黑洞而言,有两个重要特征半径:1)黑洞视界RH=(1+(1-a*)1/2)Rg,其中a*=cJ/GMBH为无量纲角动量;2)最内稳定圆轨道Rms[
2016年LIGO(Laser Interferometer Gravitational-Wave Observatory,激光干涉引力波观测台) 团队宣布探测到恒星级双黑洞并合过程产生的引力波,这不仅打开了一扇探索宇宙新窗口,也开辟了黑洞天体物理研究的新阵地[
本文中的大质量黑洞主要是相对于恒星级黑洞而言,包括中等质量黑洞和超大质量黑洞,主要指那些很难通过恒星过程形成的、质量范围在103~1010 M⊙的黑洞。
类星体是20世纪60年代天文学领域四大发现之一。类星体在很小的体积内产生巨大的能量(可达1047 erg/s)[
星系中心超大质量黑洞质量测量方法主要分为直接和间接两类,直接方法包括测量黑洞视界大小、黑洞周围恒星或气体动力学,间接方法通过与黑洞质量有关的一些观测量以及理论模型获取(如黑洞吸积盘谱拟合等)。在黑洞直接测量中,第一个比较可靠的测量应该是我们银河系中心黑洞,其距离地球约8.3 kpc,地面望远镜即可以分辨部分星系中心的恒星,并测量它们的运动轨迹。对银河系中心数十颗恒星位置进行连续近20年的跟踪观测,发现这些恒星都绕着某个共同的‘点’绕转,且速度远大于星系中其他恒星,根据恒星质量和运动轨迹,可以得到中心天体的质量约为430万倍太阳质量。在中心极小的体积内(有一颗S2的恒星近心点距中心只有120 AU,其中AU为太阳到地球之间平均距离),有如此巨大的质量,除了黑洞目前还没有其他更令人信服的解释[
对于稍远的星系来说,目前还无法直接分辨出中心气体的运动,特别是对于活动星系来说,由于其辐射非常强,直接测量中心黑洞附近的气体和恒星动力学变得更加困难。对于活动星系来说,人们找到了一种“反响映射”(reverberation mapping)的方法,活动星系核中发射线主要来自宽线区(Broad Emission Line Region)和窄线区(Narrow Emission Line Region),是由于黑洞周围不同距离的气体在黑洞吸积盘照射下电离激发形成的。如果黑洞吸积盘辐射光度产生变化,则在一定时间后,发射线也会产生光变,由连续谱和发射线光变的时间延迟就可以计算出发射线气体云到中心黑洞的距离,由宽线区云的速度弥散则可以知晓其运动速度,因此可计算出中心黑洞质量[
随着超大质量黑洞质量测量取得重要进展,人们发现星系核球与中心黑洞之间存在着紧密的关系。文献[
除了黑洞质量之外,角动量或自旋是黑洞另外一个极其重要参数。近年来黑洞自旋的测量有了部分进展,但测量的源数目依旧有限。对于一些明亮的黑洞天体(比如类星体和高软态黑洞双星等),黑洞吸积率较高,吸积盘为经典的薄盘,吸积盘中的气体沿着近圆轨道向内运动,直到最内稳定圆轨道。可以利用最内稳定圆轨道与黑洞自旋有关的特性来限定黑洞自旋参数,其中最主要的两种方法分别是通过吸积盘上铁发射线轮廓拟合以及吸积盘黑体谱能谱拟合[
在高红移,光学和红外望远镜发现了一些类星体中黑洞达到了109~1010 M⊙,比如星系ULAS J1120+0641与SDSS J0100+2802红移分别为7.1和6.3[
如果宇宙早期有种子黑洞,那么当今宇宙中是否还残留一些早期种子黑洞?探测近邻宇宙中的中等质量黑洞,建立起观测样本,分析其质量和自旋分布,对重构超大质量黑洞的成长路线将有关键性意义。中等质量黑洞可能存在于较小的矮星系中[
根据冷暗物质宇宙学模型,大质量星系是次级星系多次并合的结果[
除了上述高分辨率多波段观测给出的证据外,还有一些其他双黑洞导致的间接效应。首先是通过一些亮源的准周期光变。OJ 287是最亮的类星体之一,早在19世纪90年代前就有光学观测,在100 多年的观测数据中,光学波段存在大约12年的准周期性爆发现象。文献[
千禧模拟(Millennium simulation)[
除了千禧模拟,EPS(Extended Press-Schechter model)模型也可以用以描述暗物质晕的演化,结合半解析模型去考虑星系形成和演化。EPS是一种解析的方法,它的优势在于质量分辨率高,计算速度快。LISA(Laser Interferometer Space Antenna,空间激光干涉仪)相关分析中用到过这一方法[
千禧模拟中的红移上限为 12,而在 EPS 模型中,这一上限可以更大。而且,EPS模型中大质量黑洞并合路径更加易于理解,它们的质量随着宇宙的演化而不断增加。此外,EPS 中的三个模型也有明显的区别,pop Ⅲ 模型中预言的并合率最高的位置位于红移5~10,且质量位于低质量端;Q3_d 模型中预言的并合率最高的位置位于红移 z<10 处;Q3_nod 预言的并合率贡献分布则较为均匀。
根据文献[
ρ≡(h|h)1/2, | (1) |
其中内积 (h1|h2) :
(h1|h2)≡2∫fmaxflowdfˉh1*(f)ˉh2(f)+ˉh2*(f)ˉh1(f)Sn(f). | (2) |
根据后牛顿近似分析,可以得到双黑洞绕转某个时刻的频率:
flow=(256/5)3/81πℳ -5/8 z(tc-t)-3/8 . | (3) |
然后通过(3)可以得到内积定义(2)中的积分下限 flow,对于其积分上限,可以采用 fmax=∞ ,而 Sn(f) 来自于探测器的灵敏度曲线。对于多个探测器对同一个引力波信号的总信噪比等于它们各自信噪比的平方和开根号。
当计算天琴大质量双黑洞事件探测率时,我们考虑了天琴间歇性工作的情形,即“工作三个月+休息三个月”的模式,具体如下:
ρ2=4∑i∫fihifilodfh(f)h*(f)Sn(f) . | (4) |
并合的时间是在 tc∈U[0,5] 年的范围内随机取值,并且总是可以假设天琴在运行5年的前三个月里是工作的,结合方程(3)就可以确定对应波形的任意频段 filo-fihi 内天琴的工作状态。
当引力波信号的信噪比大于某个临界值(一般为 8)时,认为它是可以被探测到的。对于上文提到的各个模型,根据模型本身的数据各随机生产了 200 组天琴运行5年时间内所发生的并合事例。对于每一组数据,都包含了并合时源的质量、红移等信息,而并合时刻都是在均匀分布的五年时间内随机取值的。然后分别计算每组数据得到的天琴对大质量双黑洞的探测率,最后 200 组结果相加取平均。由于并合信号主要贡献在最后的并合阶段,或者说最后并合的一个星期以内,所以不需要考虑在天琴关机之后才并合的事例。此外,本工作还参考文献[
模型 | 事件率/年 | 构型Ⅰ | 构型Ⅰ+Ⅱ | ||
---|---|---|---|---|---|
探测率/年 | 探测占比/% | 探测率/年 | 探测占比/% | ||
L-seed | 2.57 | 0.08 | 3.1 | 0.162 | 6.3 |
H-seed | 2.57 | 1.055 | 41.1 | 1.642 | 63.9 |
PopⅢ | 174.70 | 10.58 | 6.1 | 22.60 | 12.9 |
Q3_d | 8.18 | 4.42 | 54.0 | 8.06 | 98.5 |
Q3_nod | 122.44 | 58.96 | 48.2 | 118.12 | 96.5 |
天文学上,引力波源的参数至关重要,研究引力波探测器探测到的信号对于源参数的估计能力的方法主要有:费歇尔矩阵和贝叶斯分析。我们选取了比较常用、快速,同时也是一种高信噪比下近似的方法:费歇尔矩阵法[
过去20年,星系中心超大质量黑洞质量测量、中心黑洞与星系关系等相关研究取得了突破性进展。这些发现也提出了系列新的问题,规划中的系列望远镜为下一个10年甚至20年与黑洞相关的研究提供了更大的机遇。特别值得一提的是,结合大黑洞引力波分析,将进一步帮助我们理解黑洞和星系演化的关键信息,比如:
1)红移z>6的早期宇宙中超大质量黑洞是如何形成的?为什么可以增长的这么快?
2)宇宙中不同红移处超大黑洞质量分布与自旋分布?其分布如何反映黑洞演化历史?高红移星系中星系、近邻伪核球星系中核球与超大质量黑洞质量关系是否符合其他星系中发现的关系?
3)星系并合历史如何?星系并合如何导致了黑洞的并合?双黑洞是通过什么样的机制逐渐靠近并最终并合的?
4)黑洞吸积和喷流等活动是否以及如何影响黑洞的增长甚至星系和宇宙大尺度结构?
5)宇宙早期是否存在种子黑洞?近邻宇宙中是否存在中等质量黑洞?若有这些中等质量黑洞,是否是早期宇宙种子黑洞遗留到今天的?
6)我们的宇宙如何演化?通过空间引力波探测计划将会给宇宙学参数限定带来哪些新的突破[
7)利用双大黑洞引力波可以对理解黑洞无毛定理带来哪些新限定?
本文对大质量双黑洞的物理性质做了一个简短的回顾,并结合天琴计划讨论了未来的空间引力波探测对于大质量双黑洞相关的基础物理问题、以及引力波天体物理问题等带来的启迪。随着下一代30~40 m级地基光学望远镜、LSST巡天望远镜(Large Synoptic Survey Telescope,大口径全天巡视望远镜)、JWST(James Webb Space Telescope,韦布空间望远镜)等空间光学望远镜、超高灵敏度的X射线望远镜和平方公里射电望远镜,特别是天琴、LISA等空间引力波望远镜的投入运行,将可能直接探测到宇宙早期种子黑洞的电磁信号与引力波信号,这些设备将为理解宇宙中黑洞的分布、黑洞的形成和演化、黑洞与星系关系、宇宙学和黑洞物理等提供强大支撑[
BARDEEN J M, PRESS W H, TEUKOLSKY S A. Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation [J]. The Astrophysical Journal,1972,178:347-370. [百度学术]
YUAN F,NARAYAN R. Hot accretion flows around black holes [J]. Annual Review of Astronomy and Astrophysics, 2014, 52: 529-588. [百度学术]
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters,2016, 116(6): 061102. [百度学术]
ZHANG S N.Black hole binaries and microquasars [J]. Frontiers of Physics,2013, 8: 630-660. [百度学术]
ABBOTT R,ABBOTT T D, ABRAHAM S, et al. Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog [EB/OL]. https://arxiv.org/abs/2010.14533. [百度学术]
NETZER H. Bolometric correction factors for active galactic nuclei [J]. Monthly Notices of the Royal Astronomical Society,2019, 488(4):5185-5191. [百度学术]
KORMENDY J, HO L C. Coevolution (or not) of supermassive black holes and host galaxies [J].Annu Rev Astron Astrophys, 2013, 51: 511-653. [百度学术]
GENZEL R, EISENHAUER F, GILLESSEN S. The galactic center massive black hole and nuclear star cluster [J]. Reviews of Modern Physics,2010, 82:3121-3195. [百度学术]
FALCKE H, MELIA F, AGOL E. Viewing the shadow of the black hole at the galactic center [J].The Astrophysical Journal Letters,2000, 528: L13-L16. [百度学术]
YUAN Y F, CAO X, HUANG L,et al. Images of the radiatively inefficient accretion flow surrounding a Kerr black hole: application in Sgr A [J]. The Astrophysical Journal, 2009, 699: 722-731. [百度学术]
AKIYAMA K, ALBERDI A, ALEF W, et al(The Event Horizon Telescope Collaboration). First M87 event horizon telescope results. Ⅱ. array and instrumentation [J]. The Astrophysical Journal Letters, 2019, 875(1): L2. [百度学术]
AKIYAMA K, ALBERDI A, ALEF W, et al. The event horizon telescope collaboration. first m87 event horizon telescope results. I. the shadow of the supermassive black hole [J]. The Astrophysical Journal Letters,2019,875(1):L1. [百度学术]
GHEZ A M, KLEIN B L, MORRIS M, et al. High proper-motion stars in the vicinity of sagittarius A*: evidence for a supermassive black hole at the center of our galaxy [J]. The Astrophysical Journal,1998,509(2): 678-686. [百度学术]
PETERSON B M. Reverberation mapping of active galactic nuclei [J]. Publications of the Astronomical Society of the Pacific,1993, 105: 247. [百度学术]
BENTZ M C, KATZ S. The AGN black hole mass database [J]. Publications of the Astronomical Society of the Pacific, 2015, 127: 67. [百度学术]
DRESSLER A,RICHSTONE D O. Stellar Dynamics in the nuclei of M31 and M32: evidence for massive black holes [J]. The Astrophysical Journal,1988, 324: 701. [百度学术]
MAGORRIAN J, TREMAINE S, RICHSTONE D,et al. The demography of massive dark objects in galaxy centers [J]. The Astronomical Journal,1998, 115: 2285-2305. [百度学术]
GEBHARDT K, BENDER R, BOWER G, et al.A relationship between nuclear black hole mass and galaxy velocity dispersion [J]. The Astrophysical Journal, 2000, 539: L13-L16. [百度学术]
FERRARESE L, MERRITT D. A fundamental relation between supermassive black holes and their host galaxies [J]. The Astrophysical Journal, 2000, 539: L9-L12. [百度学术]
FABIAN A C, VAUGHAN S, NANDRA K,et al. A long hard look at MCG-6-30-15 with XMM-Newton [J]. Monthly Notices of the Royal Astronomical Society,2002, 335:L1-L5. [百度学术]
BRENNEMAN L W, REYNOLDS C S. Constraining black hole spin via X-Ray spectroscopy [J].The Astrophysical Journal,2006, 652:1028-1043. [百度学术]
CACKETT E M, ZOGHBI A, REYNOLDS C, et al.Modelling the broad Fe Kα reverberation in the AGN NGC 4151 [J]. Monthly Notices of the Royal Astronomical Society,2014, 438: 2980-2994. [百度学术]
BRENNEMAN L W, REYNOLDS C S, NOWAK M A,et al.The spin of the supermassive black hole in NGC 3783 [J].The Astrophysical Journal,2011, 736:103. [百度学术]
MCCLINTOCK J E, SHAFEE R, NARAYAN R,et al. The spin of the near-extreme Kerr black hole GRS 1915+105 [J]. The Astrophysical Journal,2006, 652:518-539. [百度学术]
GOU L, Mc CLINTOCK J E, REID M J,et al. The extreme spin of the black hole in Cygnus X-1 [J]. The Astrophysical Journal,2011, 742: 85. [百度学术]
ABBOTT R, ABBOTT T D, ABRAHAM S, et al. GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run [EB/OL]. https://arxiv.org/abs/2010.14527. [百度学术]
REYNOLDS C S. Observing black holes spin [J]. Nature Astronomy, 2019, 3: 41-47. [百度学术]
FAN X, STRAUSS M A, RICHARDS G T,et al. A survey of z & gt;5.7 quasars in the sloan digital sky survey. IV. discovery of seven additional quasars [J]. The Astronomical Journal,2006, 131: 1203-1209. [百度学术]
BOLTON J S, HAEHNELT M G, WARREN S J,et al. How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? [J]. Monthly Notices of the Royal Astronomical Society,2011, 416: L70-L74. [百度学术]
WU X B, WANG F, FAN X, et al.An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 [J].Nature,2015, 518: 512-515. [百度学术]
VOLONTERI M. The formation and evolution of massive black holes [J]. Science,2012, 337: 544. [百度学术]
MADAU P,REES M J. Massive black holes as population Ⅲ remnants [J]. The Astrophysical Journal Letters,2001, 551:L27-L30. [百度学术]
COUCHMAN H M P, REES M J. Pregalactic evolution in cosmologies with cold dark matter [J]. Monthly Notices of the Royal Astronomical Society,1986, 221:53-62. [百度学术]
BOND J R. Massive objects and the first stars [M].Astrophysics and Space Science Library , 1984. [百度学术]
CLARK P C, GLOVER S C O, KLESSEN R S,et al. Gravitational fragmentation in turbulent primordial gas and the initial mass function of population Ⅲ stars [J]. The Astrophysical Journal,2011,727:110. [百度学术]
HEGER A, WOOSLEY E S. The nucleosynthetic signature of population Ⅲ [J]. The Astrophysical Journal, 2002, 567:532-543. [百度学术]
TRENTI M, STIAVELLI M. Formation rates of population Ⅲ stars and chemical enrichment of halos during the reionization era [J].The Astrophysical Journal,2009, 694:879-892. [百度学术]
STACY A, GREIF T H, BROMM V. The first stars: mass growth under protostellar feedback [J]. Monthly Notices of the Royal Astronomical Society,2012, 422:290-309. [百度学术]
DEVECCHI B, VOLONTERI M. Formation of the first nuclear clusters and massive black holes at high redshift [J]. The Astrophysical Journal,2009, 694:302-313. [百度学术]
HAEHNELT M G, REES M J. The formation of nuclei in newly formed galaxies and the evolution of the quasar population [J]. Monthly Notices of the Royal Astronomical Society,1993, 263:168-178. [百度学术]
LOEB A, RASIO F A. Collapse of primordial gas clouds and the formation of quasar black holes [J].The Astrophysical Journal,1994, 432: 52. [百度学术]
DEVECCHI B, VOLONTERI M. Formation of the first nuclear clusters and massive black holes at high redshift [J].The Astrophysical Journal,2009, 694:302-313. [百度学术]
DEVECCHI B, VOLONTERI M, ROSSI E M,et al. High-redshift formation and evolution of central massive objects - Ⅱ. The census of BH seeds [J]. Monthly Notices of the Royal Astronomical Society,2012, 421: 1465-1475. [百度学术]
GREENE J E, HOL C. A new sample of low-mass black holes in active galaxies [J]. The Astrophysical Journal, 2007, 670: 92-104. [百度学术]
WU Q, CZERNY B, GRZEDZIELSKI M, et al. The universal "heartbeat" oscillations in black hole systems across the mass-scale [J]. The Astrophysical Journal,2016, 833:79. [百度学术]
PERERA B B P, STAPPERS B W, LYNE A G, et al. Evidence for an intermediate-mass black hole in the globular cluster NGC 6624 [J].Monthly Notices of the Royal Astronomical Society,2017, 468:2114-2127. [百度学术]
WOO J H, CHO H, GALLO E,et al. A 10,000-solar-mass black hole in the nucleus of a bulgeless dwarf galaxy [J]. Nature Astronomy,2019, 3:755-759. [百度学术]
BARTH A J, HOL C, RUTLEDGE R E,et al.POX 52: A dwarf seyfert 1 galaxy with an intermediate-mass black hole [J]. The Astrophysical Journal,2004, 607:90-102. [百度学术]
KAMIZASA N, TERASHIMA Y, AWAKI H. A new sample of candidate intermediate-mass black holes selected by X-ray variability [J]. The Astrophysical Journal,2012, 751:39. [百度学术]
DAVIS S W, NARAYAN R, ZHU Y, et al. The cool accretion disk in ESO 243-49 HLX-1: further evidence of an intermediate-mass black hole [J]. The Astrophysical Journal,2011, 734:111. [百度学术]
SPRINGEL V. The cosmological simulation code GADGET-2 [J]. Monthly Notices of the Royal Astronomical Society,2005, 364:1105-1134. [百度学术]
BEGELMAN M C, BLANDFORD R D, REES M J. Massive black hole binaries in active galactic nuclei [J]. Nature, 1980, 287:307-309. [百度学术]
GOICOVIC F G, SESANA A, CUADRA J,et al. Infalling clouds on to supermassive black hole binaries - Ⅱ. Binary evolution and the final parsec problem [J]. Monthly Notices of the Royal Astronomical Society,2017, 472:514-531. [百度学术]
GUALANDRIS A, READ J I, DEHNEN W,et al. Collisionless losscone reflling: there is no final parsec problem [J]. Monthly Notices of the Royal Astronomical Society,2017, 464: 2301-2310. [百度学术]
YU Q J. Evolution of massive binary black holes [J]. Monthly Notices of The Royal Astronomical Society,2002,331(4):935–958. [百度学术]
TREMMEL M, GOVERNATO F, VOLONTERI M,et al. Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers [J]. Monthly Notices of the Royal Astronomical Society,2018: 475: 4967-4977. [百度学术]
KOMOSSA S, BURWITZ V, HASINGER G,et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using chandra [J]. The Astrophysical Journal Letters,2003,582: L15-L19. [百度学术]
WANG J M, CHEN Y M, HU C,et al. Active galactic nuclei with double-peaked narrow lines: are they dual active galactic nuclei? [J]. The Astrophysical Journal Letters,2009, 705: L76-L80. [百度学术]
HUANG Y, LIU X W, YUAN H B, et al. HST and LAMOST discover a dual active galactic nucleus in J0038+4128 [J]. Monthly Notices of the Royal Astronomical Society, 2014, 439: 2927-2932. [百度学术]
LIU X, GUO H, SHEN Y,et al.Hubble space telescope wide field camera 3 identifies an r p = 1 Kpc dual active galactic nucleus in the minor galaxy merger SDSS J0924+0510 at z = 0.1495 [J]. The Astrophysical Journal,2018, 862: 29. [百度学术]
AN T, MOHAN P, FREY S. VLBI studies of DAGN and SMBHB hosting galaxies [J].Radio Science,2018, 53: 1211-1217. [百度学术]
YANG X, YANG J, PARAGI Z,et al.NGC 5252: a pair of radio-emitting active galactic nuclei? [J]. Monthly Notices of the Royal Astronomical Society,2017, 464:L70-L74. [百度学术]
RODRIGUEZ C, TAYLOR G B, ZAVALA R T,et al. A compact supermassive binary black hole system [J]. The Astrophysical Journal,2006: 646: 49-60. [百度学术]
KHARB P, LAL D V, MERRITT D. A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674 [J].Astronomy Nature,2017, 1:727-733. [百度学术]
LEHTO H J, VALTONEN M J. OJ 287 outburst structure and a binary black hole model [J]. The Astrophysical Journal,1996, 460:207. [百度学术]
DET L, GOPAKUMAR A, VALTONEN M, et al.The unique blazar OJ 287 and its massive binary black hole central engine[J]. Universe, 2019, 5:108. [百度学术]
GRAHAM M J, DJORGOVSKI S G, STERN D, et al.A possible close supermassive black-hole binary in a quasar with optical periodicity [J]. Nature, 2015, 518: 74-76. [百度学术]
LI Y R, WANG J M, HO L C, et al. Spectroscopic indication of a centi-parsec supermassive black hole binary in the galactic center of NGC 5548 [J]. The Astrophysical Journal, 2016, 822: 4. [百度学术]
TANG S,GRINDLAY J. The quasar SDSS J153636.22+044127.0: a double-peaked emitter in a candidate binary black hole system [J]. The Astrophysical Journal, 2009, 704: 1189-1194. [百度学术]
WANG J M, SONG S Y , LI Y R, et al. Kinematic signatures of reverberation mapping of close binaries of supermassive black holes in active galactic nuclei [J].The Astrophysical Journal, 2018, 862:171. [百度学术]
LIU X, GREENE J E, SHEN Y, et al. Discovery of four kpcscale binary active galactic nuclei [J]. The Astrophysical Journal Letters, 2010, 715: L30-L34. [百度学术]
COMERFORD J M , NEVIN R, STEMO A, et al. The origin of double-peaked narrow lines in active galactic nuclei. IV. association with galaxy mergers [J]. The Astrophysical Journal, 2018, 867: 66. [百度学术]
YAN C S, LU Y, DAI X,et al. A probable milli-parsec supermassive binary black hole in the nearest quasar Mrk 231 [J]. The Astrophysical Journal,2015,809: 117. [百度学术]
DENNWTT-THORPE J, SCHEUER P A G, LAING R A, et al.Jet reorientation in active galactic nuclei: two winged radio galaxies [J]. Monthly Notices of the Royal Astronomical Society, 2002, 330: 609-620. [百度学术]
LIU F K, LI S, CHEN X. Interruption of tidal-disruption flares by supermassive black hole binaries [J], The Astrophysical Journal Letters, 2009, 706: L133-L137. [百度学术]
SPRINGEL V, WHITE S D M, JENKINS A,et al. Simulations of the formation, evolution and clustering of galaxies and quasars [J]. Nature, 2005, 435(7042): 629-636. [百度学术]
KLEIN A, BARAUSSE E, SESANA A,et al. Science with the spacebased interferometer elisa: supermassive black hole binaries [J]. Physical Review D, 2016, 93: 024003. [百度学术]
JIANG Z, WANG J, GAO L,et al. Gabe: galaxy assembly with binary evolution [EB/OL]. https://arxiv.org/abs/1904.11224. [百度学术]
DVORKIN I, BARAUSSE E. The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays [J]. Monthly Notices of the Royal Astronomical Society,2017,470( 4): 4547-4556. [百度学术]
ANTONINI F, BARAUSSE E, SILK J. The coevolution of nuclear star clusters, massive black holes, and their host galaxies [J]. The Astrophysical Journal,2015, 812(1):72. [百度学术]
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector [J]. Classical and Quantum Gravity,2016, 33(3): 035010. [百度学术]
WANG H T, JIANG Z,SESANA A, et al. Science with TianQin: preliminary results on massive black hole binaries [J]. Physical Review D,2019, 100: 043003. [百度学术]
SALCIDO J, BOWER R G, THEUNS T, et al.Music from the heavens-gravitational waves from supermassive black hole mergers in the eagle simulations [J]. Monthly Notices of the Royal Astronomical Society,2016, 463(1): 870-885. [百度学术]
FENG W F, WANG H T, HU X C,et al. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for tianqin [J]. Physical Review D,2019, 99:123002. [百度学术]
WANG L F, ZHAO Z W, ZHANG J F, et al. A preliminary forecast for cosmological parameter estimation with gravitational-wave standard sirens from TianQin [EB/OL]. https://arxiv.org/abs/1907.01838. [百度学术]
SHI C, BAO J, WANG H,et al. Science with TianQin: preliminary results on testing the no-hair theorem with ringdown signals [EB/OL]. https://arxiv.org/abs/1902.08922. [百度学术]
129
浏览量
254
下载量
0
CSCD
相关文章
相关作者
相关机构