1.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
2.华中科技大学物理学院,湖北 武汉 430074
李洪银(1983年生),男;研究方向:无拖曳卫星/惯性传感器设计、控制与仿真;E-mail: hongyin1983li@hust.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-13,
收稿日期:2020-11-11,
录用日期:2020-12-26
扫 描 看 全 文
李洪银,叶小容,刘佳恒等.天琴无拖曳控制研究的关键问题[J].中山大学学报(自然科学版),2021,60(01):213-224.
LI Hongyin,YE Xiaorong,LIU Jiaheng,et al.Key issues in the research on drag-free control for TianQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):213-224.
李洪银,叶小容,刘佳恒等.天琴无拖曳控制研究的关键问题[J].中山大学学报(自然科学版),2021,60(01):213-224. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B129.
LI Hongyin,YE Xiaorong,LIU Jiaheng,et al.Key issues in the research on drag-free control for TianQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):213-224. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B129.
无拖曳控制技术利用微推进器产生的推力来补偿航天器受到的非保守力使其跟随检验质量运动,是获得超低微重力水平卫星平台的重要途径,是空间基础物理、微重力测量、地球科学和卫星导航等实验研究的关键技术之一。本文阐述了无拖曳控制的发展历程和基本工作原理,对无拖曳控制系统的组成和控制算法进行了讨论,最后简要介绍了天琴引力波探测任务卫星无拖曳控制系统的结构,并针对天琴无拖曳控制系统的研究提出了关键问题以及对未来研究方向的展望。
Drag-free control technology is to use the thrust generated by the micro-thruster to compensate the non-conservative force on the spacecraft to make it follow the free falling test mass, which is an important way to obtain the ultra-low microgravity level satellite environment, and is one of the key technologies for experimental research in fundamental space physics, microgravity measurement, earth science and space navigation. This paper describes the development history and basic working principle of drag-free control, discusses the composition and control algorithm of the drag-free control system, and finally briefly introduces the structure of the drag-free control system of the TianQin gravitational wave detection mission, and raises key issues and the prospect of future research direction for the research of the TianQin drag-free control system.
无拖曳控制控制算法解耦控制工作模式在轨辨识
drag-free controlcontrol algorithmdecoupled controlmode of operationin-orbit identification
PUGH G. Proposal for a satellite test of the coriolis prediction of general relativity[M]. NASA,USA: Nonlinear Gravitodynamics, 2003:414-426.
LANGE B. The drag-free satellite [J]. AIAA Journal, 1964,2(9): 1590-1606.
DEBRA D B .A satellite free of all but gravitational forces:“TRIADI”[J] .Journal of Spacecraft and Rockets, 1974, 11 ( 9 ) :637-644.
LANGE B. Homepage:Experimental gravitational physics using drag-free satellite. http://www.dragfreesatellite.comhttp://www.dragfreesatellite.com.
PELIVAN I. Dynamics and control modeling for Gravity Probe B[J]. Space Science Reviews, 2010,151(1/2/3): 5-23.
WORDEN P W, EVERITT C W F. A testing ground for fundamental physics: Gravity Probe B and other fundamental physics experiments in space [J]. Nuclear Physics B - Proceedings Supplements, 2013(243/244): 172-179.
LI J , BENCZE W J , DEBRA D B , et al. On-orbit performance of Gravity Probe B drag-free translation control and orbit determination[J]. Advances in Space Research, 2007, 40(1):1-10.
OVERDUIN J, EVERITT F, MESTER J ,et al. The science case for STEP[J]. Advances in Space Research, 2009, 43(10): 1532-1537.
THEIL S. Satellite and test mass dynamics modeling and observation for drag-free satellite control of the STEP mission[M]. Shaker Verlag, 2003.
SUMNER T J, ANDERSON J, BLASER J P, et al. STEP (satellite test of the equivalence principle) [J]. Advances in Space Research, 2007, 39(2): 254-258.
TOUBOUL P, FOULON B, LAFARGUE L. The microscope mission[J].Acta Astronautica, 2002,50(7):433-443.
ARMANO M, AUDLEY H, AUGER G, et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results[J]. Physical Review Letters, 2016, 116(23):231101.
LUO J , MEI J , SHAO C , et al. TianQin mission concept[C]// Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology.Moscow, 2016:44-48.
LUO J , CHEN L S , DUAN H Z , et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2016, 33(3):035010.
MEI J W, SHAO C , WANG Y . Fundamentals of the TianQin mission[C]// Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. Moscow, 2016:360-361.
HU Y M , MEI J , LUO J . Science prospects for space-borne gravitational-wave missions[J]. National Science Review, 2017, 4(5):683-684.
罗子人,张敏,靳刚,等.中国空间引力波探测“太极计划”及“太极1号”在轨测试[J].深空探测学报,2020,7(1):3-10.
LUO Z R, ZHANG M, JIN G, et al. Introduction of chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10.
LUO Z , GUO Z K , JIN G , et al. A brief analysis to Taiji: Science and technology [J]. Results in Physics, 2020, 16:102918.
CANUTO E, MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE[J]. Acta Astronautica, 2009, 64(2/3):325-344.
ANDREIS D, CANUTO E S. Drag-Free and Attitude Control for the GOCE satellite[C]// Decision and Control, 2005 and 2005 European Control Conference. Cdc-Ecc '05.IEEE Conference on. IEEE Xplore, 2006:4041-4046.
CANUTO E, MOLANO A, MASSOTTI L. Drag-free control of the GOCE Satellite: Noise and observer design[J]. IEEE Transactions on Control Systems Technology, 2010,18(2):501-509.
胡明, 李洪银, 周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013(2): 61-69.
HU M, LI H Y, ZHOU Z B. Drag-free Control Technology and Its Applications[J]. Manned Spaceflight, 2013(2): 61-69.
施梨, 曹喜滨, 张锦绣,等. 无阻力卫星发展现状[J]. 宇航学报, 2010(6): 1511-1520.
SHI L,CAO X B, ZHANG J X, et al. Survey of Drag-free satellite[J]. Journal of Astronautics, 2010(6): 1511-1520.
邹奎, 苟兴宇, 薛大同. 重力梯度测量卫星无拖曳控制技术[J]. 空间控制技术与应用, 2017(2): 28-35.
ZOU K, GOU X Y, XUE D T. An Overview on drag-free control for gravitational gradiometry satellites[J]. Aerospace Control and Application, 2017(2): 28-35.
刘伟,高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学(物理学 力学 天文学), 2020,50(7): 112-122.
LIU W, GAO Y. Drag-free control methods for space-based gravitational-wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020,50(7): 112-122.
张锦绣, 曹喜滨, 董晓光,等. Drag-free卫星编队的发展现状和趋势研究[J]. 哈尔滨工业大学学报, 2010(5): 673-677.
ZHANG J X, CAO X B, DONG X G, et al. Development status and tendency of drag-free satellite formation flying[J]. Journal of Harbin Institute of Technology, 2010(5): 673-677.
BENCZE W J , DEBRA D B , HERMAN L , et al. On-orbit performance of the Gravity Probe B drag-free translation control system[J]. Advances in the Astronautical Sciences, 2006, 125:425-440.
FICHTER W, SCHLEICHER A, VITALE S. Drag-free control design with cubic test masses[M]//Lasers, clocks and drag-free control. Astrophysics and Space Science Library(vol 349). Berlin, Heidelberg: Springer, 2008.
FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag -free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139-S148.
FICHTER W,SCHLEICHER A,BENNANI S,et al. Closed loop performance and limitations of the LISA Pathfinder drag-free control system[C]//Proceeding of AIAA Guidance,Navigation and Control Conference and Exhibit,2007,6732:1-17.
GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA pathfinder mission[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.
SCHLEICHER A, ZIEGLER T, SCHUBERT R, et al. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal, 2018, 10(4): 471-485.
CANUTO E. Embedded model control: outline of the theory [J]. ISA Transactions,2007, 46(3):363-377.
ZIEGLER T, FICHTER W. Test mass stiffness estimation for the LISA Pathfinder drag-free system[C]// AIAA Guidance, Navigation & Control Conference & Exhibit,2007.
ZIEGLER T, FICHTER W. Identification Algorithms for Micro-Propulsion System Parameters using drag-free test masses[J]. Space Science Reviews, 2010, 151(s1/s2/s3):49-60.
GRYNAGIER A, ZIEGLER T, FICHTER W. Identification of dynamic parameters for a one-axis drag-free gradiometer[J]. IEEE Transactions on Aerospace & Electronic Systems, 2013, 49(1):341-355.
NOFRARIAS M, RÖVER C, HEWITSON M, et al. Bayesian parameter estimation in the second LISA Pathfinder mock data challenge[J]. Physical Review D, 2010, 82(12):122002(14).
CONGEDO G, FERRAIOLI L, HUELLER M, et al. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis[J]. Physical Review D,2012,85(12): 122004(26).
ARMANO M, AUDLEY H, BAIRD J, et al. Calibrating the system dynamics of LISA Pathfinder[J]. Physical Review D, 2018, 97(12):122002(14).
0
浏览量
3
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构