天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
文明轩(1996年),男;研究方向:低噪声温度测量;E-mail: wmx3@mail2.sysu.edu.cn
李珏(1996年),女;研究方向:光纤温度传感;E-mail:lijue6@mail2.sysu.edu.cn
丁延卫(1976年),男;研究方向:重力/引力卫星总体设计与机热一体化;E-mail: dingyw3@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-08,
收稿日期:2020-11-11,
录用日期:2020-12-29
扫 描 看 全 文
文明轩,李珏,王成等.高精度温度传感、测量与控制技术综述[J].中山大学学报(自然科学版),2021,60(01):146-155.
WEN Mingxuan,LI Jue,WANG Cheng,et al.Review of high precision temperature sensing, measurement and control technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):146-155.
文明轩,李珏,王成等.高精度温度传感、测量与控制技术综述[J].中山大学学报(自然科学版),2021,60(01):146-155. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B127.
WEN Mingxuan,LI Jue,WANG Cheng,et al.Review of high precision temperature sensing, measurement and control technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):146-155. DOI: 10.13471/j.cnki.acta.snus.2020.11.11.2020B127.
空间引力波探测中,高精度温度传感、测量与控制作为探测卫星的关键技术之一,技术指标高,实现难度大。本文主要针对高精度温度传感、测量与控制,介绍了传统铂电阻和NTC热敏电阻温度传感特性、新型光纤温度传感关键技术以及基于PID的温度控制算法,对温度传感、测量以及控制算法特性进行了分析归纳。
In space gravitational wave detection, high precision temperature sensing, measurement and control are some of the key technologies for satellites, with high technical requirements and implementation difficulty. This paper mainly focuses on high precision temperature sensing, measurement and control, introducing the sensing characteristics of traditional platinum resistance and NTC thermistor temperature sensors, and new optical fiber temperature sensing and PID temperature control algorithms. The characteristics of temperature sensing, measurement and control algorithms are analyzed and summarized.
铂电阻NTC热敏电阻光纤光栅温度传感温度控制
platinum resistanceNTC thermistorfiber Bragg gratingtemperature sensingtemperature control
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010.
BENEDICT R P. Fundamentals of temperature, pressure, and flow measurements[M]. John Wiley & Sons, 1984.
MICHALSKI L, ECKERSDORF K, KUCHARSKI J, et al. Dynamic temperature measurement[C]. Proceedings Tempus Summer School Sensor Construction.2001: 326-351.
BENTLEY J P. Temperature sensor characteristics and measurement system design[J]. Journal of Physics E: Scientific Instruments, 1984, 17(6): 430.
CROVINI L, JUNG H J, KEMP R C, et al. The platinum resistance thermometer range of the International Temperature Scale of 1990[J]. Metrologia, 1991, 28(4): 317.
CHAUHAN J, NEELAKANTAN U. An experimental approach for precise temperature measurement using platinum RTD PT1000[C]//2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016: 3213-3215.
ATHERTON A. The applicability of the IPTS-68 interpolation equations to PRTs which have low temperature coefficients of resistance[J]. Transactions of the Institute of Measurement and Control, 1988, 10(2): 110-112.
AMBROSETTI R, MATTEOLI E, RICCI D. Note: A versatile, stable, high-resolution readout system for RTD and thermistor sensors[J]. Review of Scientific Instruments, 2012, 83(9): 096101.
ROSS-PINNOCK D, MAROPOULOS P G. Review of industrial temperature measurement technologies and research priorities for the thermal characterisation of the factories of the future[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(5): 793-806.
GUILLET B, MÉCHIN L, ROBBES D. High performance temperature controller: application to the excess noise measurements of YBCO thermometers in the transition region[EB/OL].https://arxiv.org/abs/conk-mat/0305469https://arxiv.org/abs/conk-mat/0305469.
VALENTINI D, VACANCE M, BATTAGLIA D, et al. GOCE instrument thermal control[J]. SAE Transactions, 2006: 115-126.
STEIGER C, MARDLE N, EMANUELLI P P. GOCE end-of-mission operations report[R]. ESA2014, 2014.
WILSON J S. Sensor technology handbook[M]. Elsevier, 2004.
LIU T, ZHANG H, MA P, et al. Core–shell NTC materials with low thermal constant and high resistivity for wide‐temperature thermistor ceramics[J]. Journal of the American Ceramic Society, 2019, 102(8): 4393-4398.
STEINHART J S, HART S R. Calibration curves for thermistors[C]//Deep sea research and oceanographic abstracts. Elsevier, 1968, 15(4): 497-503.
KIM J D, JEONG D H, SONG H J, et al. Efficient calibration tool for thermistor[J]. Sens Mater, 2015, 27(8): 593-598.
SCHWEIGER H G, MULTERER M, GORES H J. Fast multichannel precision thermometer[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(5): 2002-2009.
WUDY F E, MOOSBAUER D J, MULTERER M, et al. Fast micro-Kelvin resolution thermometer based on NTC thermistors[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4823-4828.
LOBO A, NOFRARIAS M, SANJUAN J. Thermal diagnostics for LTP[J]. Classical and Quantum Gravity, 2005, 22(10): S171.
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20μHz[J]. Physical Review Letters, 2018, 120(6): 061101.
ARMANO M, AUDLEY H, BAIRD J, et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder[J]. Monthly Notices of the Royal Astronomical Society, 2019, 486(3): 3368-3379.
HILL K O, FUJII Y, JOHNSON D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.
HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276.
LAM D K W, GARSIDE B K. Characterization of single-mode optical fiber filters[J]. Applied Optics, 1981, 20(3): 440-445.
LEMAIRE P J, VENGSARKAR A M, REED W A, et al. Refractive-index changes in optical fibers sensitized with molecular hydrogen[C]// Optical Fiber Communication Conference. Optical Society of America, 1994: TuL1.
MELTZ G, MOREY W W, GLENN W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.
HILL K O, MALO B, VINEBERG K A, et al. Efficient mode conversion in telecommunication fibre using externally written gratings[J]. Electronics Letters, 1990, 26(16): 1270-1272.
HILL K O, MALO B, BILODEAU F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.
HIRAYAMA N, SANO Y. Fiber Bragg grating temperature sensor for practical use[J]. ISA Transactions, 2000, 39(2): 169-173.
VORATHIN E, HAFIZI Z M, ISMAIL N, et al. Review of high sensitivity fibre-optic pressure sensors for low pressure sensing[J]. Optics & Laser Technology, 2020, 121: 105841.
LEE C L, YOU Y W, DAI J H, et al. Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature[J]. Sensors and Actuators B: Chemical, 2016, 222: 339-346.
YAKUSHIN S S, WOLF A A, DOSTOVALOV A V, et al. A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber[J]. Optical Fiber Technology, 2018, 43: 101-105.
ZHAO Y, HUANG H, WANG Q. Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor[J]. Sensors and Actuators A: Physical, 2011, 165(2): 185-188.
TIAN P, ZHU Z, WANG M, et al. Refractive index sensor based on fiber bragg grating in hollow suspended-core fiber[J]. IEEE Sensors Journal, 2019, 19(24): 11961-11964.
CHEN Y, HAN Q, YAN W, et al. Magnetic-fluid-coated photonic crystal fiber and FBG for magnetic field and temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2665-2668.
SNELDERS D J M, MACKENZIE F O V, BOERSMA A, et al. Zeolites as coating materials for Fiber Bragg Grating chemical sensors for extreme conditions[J]. Sensors and Actuators B: Chemical, 2016, 235: 698-706.
JEWART C, MCMILLEN B, CHO S K, et al. X-probe flow sensor using self-powered active fiber Bragg gratings[J]. Sensors and Actuators A: Physical, 2006, 127(1): 63-68.
MENDEZ A. Fiber Bragg grating sensors: a market overview[C]//Third European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics, 2007, 6619: 661905.
孙圣和. 现代传感器发展方向[J]. 电子测量与仪器学报, 2009, 23(1): 1-10.
SUN S H. Development direction of modern sensors [J]. Journal of Electronic Measurement and Instrumentation, 2009, 23(1): 1-10.
KASHYAP R. Fiber bragg gratings[M]. Academic Press, 2009.
VENUGOPALAN T, SUN T, GRATTAN K T V. Temperature characterization of long period gratings written in three different types of optical fibre for potential high temperature measurements[J]. Sensors and Actuators A: Physical, 2010, 160(1/2): 29-34.
GAO X, NING T, ZHANG C, et al. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing[J]. Optics Communications, 2020, 454: 124441.
LEI W, CHEN H. Reflectivity measurement of fiber Bragg grating by cavity ring-down spectroscopy technique[J]. Optik, 2018, 172: 526-530.
ZHANG Z F, TAO X M. Intrinsic temperature sensitivity of fiber Bragg gratings in PMMA-based optical fibers[J]. IEEE Photonics Technology Letters, 2012, 25(3): 310-312.
BHOWMIK K, PENG G D, AMBIKAIRAJAH E, et al. Intrinsic high-sensitivity sensors based on etched single-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 2014, 27(6): 604-607.
KANG H C, KIM D, SONG M. Sensitivity enhancement of FBG temperature sensor[C]//Optical Sensing and Detection Ii. International Society for Optics and Photonics, 2012, 8439: 84392C.
FENG Y, ZHANG H, LI Y L, et al. Highly sensitive Ni-Cu duplex metal coated fiber Bragg grating temperature sensor[C]//2009 Symposium on Photonics and Optoelectronics. IEEE, 2009: 1-4.
BARRERA D, FINAZZI V, VILLATORO J, et al. Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications[J]. IEEE Sensors Journal, 2011, 12(1): 107-112.
LIU Y, YANG D, WANG Y, et al. Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure[J]. Optics Communications, 2019, 443: 166-171.
CAO Y, LIU H, TONG Z, et al. Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating[J]. Optics Communications, 2015, 342: 180-183.
QI Y, JIA C, TANG L, et al. Simultaneous measurement of temperature and humidity based on FBG-FP cavity[J]. Optics Communications, 2019, 452: 25-30.
SONG L J, YU G Q. The packaging technique about FBG temperature sensor[C]// 2010 Second International Conference on Communication Systems, Networks and Applications. IEEE, 2010, 1: 67-70.
任宇. 光纤光栅传感器解调系统设计[D]. 杭州: 浙江大学, 2015.
REN Y. Design of fiber bragg grating sensor demodulation system [D]. Hangzhou: Zhejiang University, 2015.
KERSEY A, BERKOFF T, MOREY W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters, 1992, 28(3): 236-238.
KIM C S, LEE T H, YU Y S, et al. Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters [J]. Opt Express, 2006, 14(19): 8546-8551.
LEE B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology, 2003, 9(2): 57-79.
KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
刘剑,孙善会. 微弱光电信号测量电路的设计[J]. 新型工业化, 2011, 1(9): 69-72.
LIU J, SUN S H. Design of weak photoelectric signal measurement circuit [J]. New Industrialization, 2011, 1(9): 69-72.
WANG C, ZHANG Y, SUN J, et al. Research on a fiber bragg grating temperature measurement method for inter-satellite laser link[J]. Review of Scientific Instruments, 2020, 91(1): 1-10.
陈勇,刘焕淋.光纤光栅传感技术与应用[M]. 北京:科学出版社, 2018:63-66.
陈志军,白剑,吴祖堂,等. 光纤布喇格光栅反射谱寻峰算法优化及比较[J]. 光子学报, 2015, 44(11): 83-88.
CHEN Z J, BAI J, WU Z T, et al. Optimization and Comparison of peak searching algorithm for Fiber Bragg Grating reflection Spectrum [J].Acta Photonics, 2015, 44(11): 83-88.
胡寿松. 自动控制原理 [M]. 4版.北京:科学出版社, 2001.
LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.
徐志明. 小卫星高精度热控方法研究[D]. 合肥:中国科学技术大学,2018.
XU Z M. Study on high-precision thermal control method for small satellites [D]. Hefei: University of Science and Technology of China,2018.
LEMMEN M, KOUWEN J, KOOREVAAR F. In-flight results of the sciamachy optical assembly active thermal control system[C]// 34th International Conference on Environmental Systems (ICES) Colorado Springs. Colorado, 2004:19-22.
CHOI M K. Thermal assessment of swift instrument module thermal control system and mini heater controllers after 5+years in flight[C]//40th International Conference on Environmental Systems, 2010.
LI X P, ZHAO Y W, LEI M. High precision and stability temperature control system for the immersion liquid in immersion lithography[P]. Flow Measurement & Instrumentation:S095559861630111X.
LI J, LOCKHART J M, BORETSKY P. Cryogenic precision digital temperature control with peaked frequency response[J]. Review of Scientific Instruments, 2004, 75(5):1182.
张辉. 微纳米测量环境控制机理及系统研究[D].合肥:合肥工业大学,2009.
ZHANG H. Study on environmental control mechanism and system of micro-nano measurement [D]. Hefei: Hefei University of Technology,2009.
李秀丽. 基于神经网络的PID算法在黑体辐射源温度控制中的研究[D].天津:天津理工大学,2018.
LI X L. Research on temperature control of blackbody radiation source based on PID algorithm based on neural network [D].Tianjin: Tianjin University of Technology,2018.
李国强,耿利寅,童叶龙.航天器铷钟的一种精密控温系统[J].航天器工程,2011,20(4):93-98.
LI G Q, GENG L Y, TONG Y L.A precision temperature control system of spacecraft rubidium clock [J]. Spacecraft Engineering,2011,20(4):93-98.
王健. 基于遗传蚁群算法的恒温控制系统的研究与实现[D]. 哈尔滨:哈尔滨理工大学,2018.
WANG J. Research and implementation of a thermostatic control system based on genetic ant colony algorithm [D]. Harbin: Harbin University of Science and Technology,2018.
刘智城,杨向宇.基于蚁群算法分数阶PID控制器在温度控制系统的应用[J].机械制造与自动化,2018,47(5):218-220+224.
LIU Z C, YANG X Y.Application of fractional-order PID controller based on ant colony algorithm in temperature control system [J]. Machinery Manufacturing and Automation, 2018,47(5):218-220+224.
FAN K C, WANG H M, LIU Y C. Development of a constant temperature environment chamber with high stability[J]. Materials Ence Forum, 2008, 594:78-83.
KRAMAR J, JUN J, PENZES W, et al. The molecular measuring machine [C]//Proceedings of the 1998 International Conference on Mechatronic Technology. Hsinchu, Taiwan, 1998: 477-487.
0
浏览量
2
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构