天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
王继河(1982年生),男;研究方向:分布式航天器动力学与控制;E-mail:wangjihe@mail.sysu.edu.cn
孟云鹤(1978年生),男;研究方向:航天器系统建模与仿真;E-mail: mengyh7@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-08,
收稿日期:2020-11-10,
录用日期:2020-11-25
扫 描 看 全 文
王继河,孟云鹤,宋佳凝等.空间引力波探测系统数值与半物理仿真技术综述[J].中山大学学报(自然科学版),2021,60(01):233-238.
WANG Jihe,MENG Yunhe,SONG Jianing,et al.Review of numerical and hardware-in-the-loop simulation technology of space-borne gravitational wave detection system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):233-238.
王继河,孟云鹤,宋佳凝等.空间引力波探测系统数值与半物理仿真技术综述[J].中山大学学报(自然科学版),2021,60(01):233-238. DOI: 10.13471/j.cnki.acta.snus.2020.11.10.2020B124.
WANG Jihe,MENG Yunhe,SONG Jianing,et al.Review of numerical and hardware-in-the-loop simulation technology of space-borne gravitational wave detection system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):233-238. DOI: 10.13471/j.cnki.acta.snus.2020.11.10.2020B124.
空间引力波探测系统具有超高精度指标需求、子系统间强耦合等特点,造成传统的航天器数值和半物理仿真技术难以直接应用到空间引力波探测系统的数值和半物理仿真验证中。为促进适用于空间引力波探测系统的数值和半物理仿真技术的研究,本文首先调研了空间引力波探测系统所涉及的数值和半物理仿真技术国内外研究现状,包括:数值仿真系统、光/机/热/自引力多场耦合仿真技术、地面半物理仿真验证技术等。而后,总结提出空间引力波探测系统在数值和半物理仿真技术方面需重点解决的关键技术,包括:空间引力波探测系统数值仿真体系架构设计技术、全任务流程仿真技术、高速高精度的多场耦合仿真技术和高置信度的空间引力波探测系统地面半物理仿真技术。
Space-borne gravitational wave detection system has the characteristics of ultra-high precision index requirements and strong coupling between subsystems, which makes it difficult for the traditional spacecraft numerical and hardware-in-the-loop simulation technology to be directly applied to the numerical and hardware-in-the-loop simulation verification of space-borne gravitational wave detection system. In order to promote the research of numerical and hardware-in-the-loop simulation technology suitable for space-borne gravitational wave detection system, this paper investigates the research status of numerical and hardware-in-the-loop simulation technology involved in space-borne gravitational wave detection system, including: numerical simulation system, optical/mechanical/thermal/self-gravity multi-field coupling simulation technology, hardware-in-the-loop simulation technology, etc. Then, the key technologies in the numerical and hardware-in-the-loop simulation technology of the space-borne gravitational wave detection system are summarized, including: the architecture design technology of the numerical simulation system of the space-borne gravitational wave detection system, the full task process simulation technology, the high-speed and high-precision multi-field coupling simulation technology, and the hardware-in-the-loop simulation technology of the space-borne gravitational wave detection system with high confidence.
空间引力探测系统数值与半物理仿真仿真体系结构设计全任务流程仿真多场耦合仿真
numerical and hardware-in-the-loop simulation of space-borne gravity detection systemsimulation architecture designfull task process simulationmulti-field coupling simulation
KARSTEN D, PAU A, HEATHER A, et al. LISA: A proposal in response to the ESA call for L3 mission concepts[R]. 2017.
MEN J R, NI W T, WANG G. Design of ASTRODGW orbit[J]. Chinese Astronomy and Astrophysics, 2010,34(4): 434-446.
KAWAMURA S, NAKAMURA T, ANDO M, et al. The Japanese space gravitational wave antenna {DECIGO [J]. Classical and Quantum Gravity, 2006, 23(8): 125-131.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016,33: 035010.
GONG X F, LAU Y K, XU S N, et al. Descope of the ALIA mission [J]. Journal of Physics: Conference Series, 2015, 610(1):012011.
RUBBO L J , CORNISH N J , POUJADE O . The LISA simulator[J]. AIP Conference Proceedings, 2003, 686(1): 307-310.
VALLISNERI M . Synthetic LISA: Simulating time delay interferometry in a model LISA[J]. Physical Review, 2005,D71: 022001.
PETITEAU A,AUGER G, HALLOIN H, et al. LISACode : A scientific simulator of LISA[J]. Physical Review, 2008,D77(2):023002.
BAYLE J B, LILLEY M, PETITEAU A, et al. Effect of filters on the time-delay interferometry residual laser noise for LISA[J]. 2019,99(8): 084023.
MERKOWITZ S M, CONKEY S, HAILE W B, et al. Structural, thermal, optical and gravitational modelling for LISA[J]. Classical & Quantum Gravity, 2004, 21(5):S603-S610(8).
https://tfaws.nasa.gov/TFAWS03/Data/Interdisciplinary%20Session/Peabody.pdfhttps://tfaws.nasa.gov/TFAWS03/Data/Interdisciplinary%20Session/Peabody.pdf.
BRANDT N, FICHTER W, KERSTEN M, et al. End-to-End modeling for drag-free missions with application to LISA pathfinder[J]. IFAC Proceedings Volumes, 2004, 37(6):241-246.
BRANDT N, FICHTER W, KERSTEN M, et al. LISA Pathfinder E2E performance simulation: optical and self-gravity stability analysis[J]. Classical & Quantum Gravity, 2005, 22(10):S493.
MONTEMURRO F. Self-gravity and thermo elastic distortion modelling for drag-free satellite simulations[D]. Pisa:University of Pisa, 2004.
CESARONE R J, ABRAHAM D S, SHAMBAYATI S, et al. Deep-space optical communications[C]// Space Optical Systems and Applications (ICSOS), 2011 International Conference on. IEEE, 2011.
https://femci.gsfc.nasa.gov/workshop/2001/presentations/mosier/Mosier_NGST_Mono6.pdfhttps://femci.gsfc.nasa.gov/workshop/2001/presentations/mosier/Mosier_NGST_Mono6.pdf.
ROBERTSON A, INALHAN G, HOW J P. Formation control strategies for a separated spacecraft interferometer[C]// Proceedings of the 1999 American Control Conference (Cat No 99CH36251.
IEEE, 1999:6: 4142-4147.
https://core.ac.uk/display/24604296https://core.ac.uk/display/24604296.
https://dst.jpl.nasa.gov/test_beds/https://dst.jpl.nasa.gov/test_beds/.
NAKKA Y K, FOUST R C, LUPU E S, et al. Six degree-of-freedom spacecraft dynamics simulator for formation control research[C]// 2018 AAS/AIAA Astrodynamics Specialist Conference,2018.
WIMMER T, BOGE T, MUEHLBAUER Q. EPOS: A Hardware-in-the-Loop robotic simulation assembly for testing automated rendezvous and docking GNC sensor payloads[C]//8th International ESA Conference on Guidance, Navigation & Control Systems. 2011: 5-10.
DANZMANN K. LISA - an ESA cornerstone mission for the detection and observation of gravitational waves[J]. Advances in Space Research, 2003, 32(7):1233-1242.
HUELLER M, CAVALLERI A, DOLESI R, et al. Torsion pendulum facility for ground testing of gravitational sensors for LISA[J]. Classical & Quantum Gravity, 2002, 19(7):1757.
CARBONE L, CAVALLERI A, DOLESI R, et al. Achieving geodetic motion for LISA test masses: ground testing result[J]. Physical Review Letters, 2003, 91(15):151101.
RUSSANO G. A torsion pendulum ground test of the LISA Pathfinder Free-fall mode[D].Trento:University of Trento, 2015.
DANIELE N. Toward a third generation torsion pendulum for the femto newton level testing of free fall in the laboratory [D]. Trento:Università Degli Studi Di Trento, 2007.
RUSSANO G, CAVALLERI A, CESARINI A, et al. Measuring fN force variations in the presence of constant nN forces: a torsion pendulum ground test of the LISA Pathfinder free-fall mode[J]. Classical and Quantum Gravity, 2018, 35(3): 035017.
TOMBOLATO D. A laboratory study of force disturbances for the LISA pathfinder free fall demonstration mission[D]. Trento:University of Trento, 2008.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构