天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
王继河(1982年生),男;研究方向:分布式航天器动力学与控制;E-mail:wangjihe@mail.sysu.edu.cn
张锦绣(1978年生),男;研究方向:分布式航天器系统体系构建及总体设计;E-mail:zhangjinxiu@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-13,
收稿日期:2020-11-10,
录用日期:2020-11-30
扫 描 看 全 文
王继河,张锦绣,孟云鹤等.空间引力波探测系统编队动力学与控制技术综述[J].中山大学学报(自然科学版),2021,60(01):156-161.
WANG Jihe,ZHANG Jinxiu,MENG Yunhe,et al.Review of formation dynamics and control technology of space-borne gravitational wave detection system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):156-161.
王继河,张锦绣,孟云鹤等.空间引力波探测系统编队动力学与控制技术综述[J].中山大学学报(自然科学版),2021,60(01):156-161. DOI: 10.13471/j.cnki.acta.snus.2020.11.10.2020B123.
WANG Jihe,ZHANG Jinxiu,MENG Yunhe,et al.Review of formation dynamics and control technology of space-borne gravitational wave detection system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):156-161. DOI: 10.13471/j.cnki.acta.snus.2020.11.10.2020B123.
针对空间引力波探测系统对超远距离编队动力学与控制技术提出的挑战,调研分析了空间引力波探测系统所涉及的动力学与控制技术国内外研究现状,包括:超远距离相对动力学、高稳定轨道设计、高精度构形初始化策略与控制、构形重构与维持以及多自由度协调控制等方面。在对相关领域国内外研究现状分析的基础上,提出了空间引力波探测系统在动力学与控制方面需重点解决的关键技术:超远距离编队构形发散机理建模与分析、高稳构形鲁棒优化设计理论与方法、有限机动能力约束下的高精度构形初始化和保持技术、非科学与故障模式下编队姿轨维持策略和多自由度协调控制等。
With respect to the challenge of ultra-long-distance formation dynamics and control technology brought by space-borne gravitational wave detection system
this paper investigates and analyzes the research status of dynamics and control technology involved in space-borne gravitational wave detection system
including ultra-long-distance relative dynamics
high stability orbit design
high precision configuration initialization strategy and control method
formation reconfiguration and maintenance
multi degree of freedom coordinated control. Based on the analysis of the research status
the key technologies in dynamics and control of space-borne gravitational wave detection system are proposed
including modeling and analysis of formation divergence mechanism for ultra-long-distance formation
robust optimization design theory and method for high stability configuration
initialization and maintenance technology of high precision configuration with limited orbital maneuverability
formation attitude and orbit maintenance strategy under unscientific and fault mode and multi degree of freedom coordinated control approach.
编队动力学与控制高稳构形鲁棒优化设计构形初始化和保持空间引力波探测系统
formation dynamics and controlrobust optimization design of high stability configurationconfiguration initialization and maintenancespace-borne gravitational wave detection system
KARSTEN D,PAU A,HEATHER A, et al. LISA: A proposal in response to the ESA call for L3 mission concepts[R]. 2017.
MEN J R, NI W T, WANG G. Design of ASTRODGW orbit[J]. Chinese Astronomy and Astrophysics, 2010,34(4): 434-446.
KAWAMURA S, NAKAMURA T, ANDO M, et al. The Japanese space gravitational wave antenna {DECIGO[J]. Classical and Quantum Gravity, 2006, 23(8): 125-131.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33: 035010.
GONG X F, LAU Y K, XU S N, et al. Descope of the ALIA mission[J]. Journal of Physics: Conference Series, 2015, 610(1):012011.
GIULICCHI L, WU S F, FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology, 2013, 24: 283-294.
de MARCHI F, PUCACCO G, BASSAN M. Optimizing the Earth LISA ‘rendezvous’ [J]. Classical and Quantum Gravity, 2012, 29(3): 035009.
NAYAK K R, KOSHTI S, DHURANDHAR S, et al. On the minimum flexing of LISA’s arms[J]. Classical and Quantum Gravity, 2006, 23(5):1763-1778.
LI G Y, YI Z H, HEINZEL G, et al. Methods for orbit optimization for the LISA gravitational wave observatory[J]. International Journal of Modern Physics D, 2008, 17(7): 1021-1042.
万小波,张晓敏,黎明.天琴计划轨道构形长期漂移特性分析[J].中国空间科学技术,2017,37(3):110-116.
WAN X, ZHANG X, LI M. Analysis of long-period drift characteristics for orbit configuration of the TianQin Mission[J]. Chinese Space Science and Technology, 37(3):110-116.
YE B B, ZHANG X F, ZHOU M Y, et al. Optimizing orbits for TianQin[J]. International Journal of Modern Physics D,2019,28(9):1950121.
TAN Z, YE B, ZHANG X.Impact of orbital orientations and radii on TianQin constellation stability[J].International Journal of Modern Physics D, 2020, 29(8):035010.
XIA Y, LI G Y, HEINZEL G, et al. Orbit design for the Laser Interferometer Space Antenna (LISA)[J]. Science China(Physics, Mechanics and Astronomy), 2010, 53(1):179-186.
HALLOIN H. Optimizing orbits for (e)LISA[J]. Journal of Physics Conference, 2016, 840(1):012048.
WANG G, NI W T. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris[J]. Chinese Physics B,2013,22(4):571-579.
LI G Y, YI Z H, HEINZEL G. Methods for orbit optimization for the LISA gravitational wave observatory[J]. International Journal of Modern Physics D, 2008,17(7): 1021-1042.
YANG C H, ZHANG H. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics, 2019,3(2):155-171.
HAMMESFAHR A. LISA Study of the laser interferometer space antenna final technical report[R]. Final Technical Report LI-RP-DS-009, Astrium, 2002.
SWEETSER T H . An end-to-end trajectory description of the LISA mission[J]. Classical & Quantum Gravity, 2005, 22(10):S429.
LUISELLA G, WU S F, FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology, 2013, 24(1): 283-294.
WU A M , NI W T . Deployment and simulation of the ASTROD-GW formation[J]. International Journal of Modern Physics D, 2013, 22(1):1341003.
HELLINGS R. JPL Team X space-based gravitational-wave observatory OMEGA report [R]. Final Report v.1.45a (public release version), 2012.
BENDER P L. Cancellation of differential accelerations for the LISA spacecraft[J]. Class Quantum Grav, 2006, 23:6149-6154.
HECHLER F , FOLKNER W M . Mission analysis for the Laser Interferometer Space Antenna (LISA) mission[J]. Advances in Space Research, 2003, 32(7):1277-1282.
黄文涛,师鹏,赵育善,等.空间激光干涉引力波探测器轨道修正方法[J].北京航空航天大学学报,2020,46(3):598-607.
HUANG W T, SHI P, ZHAO Y S, et al. Orbit correction method of space-based laser interferometric gravitational wave detector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020,46(3):598-607.
HAINES R. Development of a drag-free control system[C] //Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites. Logan:Utah State University Press, 2000.
ZIEGLER B, BLANKE M.Drag-free motion control of satellite for high-precision gravity field mapping[C]// International Conference on Control Applications. UK,Glasgow: IEEE, 2002:292-297.
GATH P F, FICHTER W, KERSTEN M. Drag free and attitude control system design for the LISA- pathfinder mission[C] // AIAA Guidance, Navigation, and Control Conference and Exhibit,2004:5430.
GATH P,SCHULTE H R,WEISE D,et al. Drag free and attitude control system design for the LISA science mode[C] // AIAA Guidance, Navigation and Control Conference and Exhibit,2007:6731.
0
浏览量
2
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构