1.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
2.冲绳科学技术大学院大学, 日本 冲绳 951-8073
张建东(1990年生),男;研究方向:引力理论、黑洞物理、引力波;E-mail:zhangjd9@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-18,
收稿日期:2020-11-09,
录用日期:2020-11-14
扫 描 看 全 文
张建东,包佳慧,胡一鸣等.利用天琴研究引力与黑洞本质[J].中山大学学报(自然科学版),2021,60(01):74-85.
ZHANG Jiandong,BAO Jiahui,HU Yiming,et al.Probing the nature of gravity and black hole with TianQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):74-85.
张建东,包佳慧,胡一鸣等.利用天琴研究引力与黑洞本质[J].中山大学学报(自然科学版),2021,60(01):74-85. DOI: 10.13471/j.cnki.acta.snus.2020.11.09.2020B122.
ZHANG Jiandong,BAO Jiahui,HU Yiming,et al.Probing the nature of gravity and black hole with TianQin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):74-85. DOI: 10.13471/j.cnki.acta.snus.2020.11.09.2020B122.
空间引力波探测器的一个重要研究目标,是利用引力波信号对物理学的基本理论进行研究。具体而言,主要是研究引力与黑洞的本质。前者主要是检验引力理论是否符合广义相对论,后者则是检验探测到的辐射引力波的致密天体是否为广义相对论中所预言的克尔黑洞。天琴作为一个空间引力波探测器,将能够探测到大量不同类型的引力波源所发出的信号。利用这些各不相同的信号,我们将有望从各个可能的方面对引力与黑洞的本质进行研究。在本文中,我们将对天琴所采用的研究引力与黑洞本质的方法进行介绍,并对预期中天琴所能达到的探测精度进行分析。
An important objective of space borne gravitational wave detectors is using gravitational wave signals to probe the fundamental theories of physics. Specifically, it means the study of the nature of gravity and black holes. The former objective is to test whether the gravitational theory is general relativity or not, and the latter one is to test whether the detected compact obejcts radiating gravitational waves is the Kerr black hole predicted in general relativity. As a space borne gravitational wave detector, TianQin may detect a lot of signals from many different kinds of gravitational wave sources. Using these signals, we expect to probe the nature of gravity and black holes from all possible aspects. In this article, we will introduce the methods that TianQin would use to probe the nature of gravity and black holes, and analyze the expected detection accuracy of TianQin.
引力波广义相对论黑洞
gravitational wavegeneral relativityblack hole
ABBOTT B P, LIGO Scientific Collaboration ,Virgo Collaboration, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al(LIGO scientific collaboration and Virgo collaboration).GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs[J]. Physical Review X, 2019, 9(3): 031040.
ABBOTT B P, ABBOTT T D, ABRAHAM S,et al(LIGO scientific collaboration andVirgo collaboration).GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run[EB/OL].https://arxiv.org/abs/2010.14527https://arxiv.org/abs/2010.14527.
ARZOUMANIAN Z, BAKER P T,BLUMER H,et al(The NANOGrav collaboration). The NANOGrav 12.5-year data set: search for an isotropic stochastic gravitational-wave background[EB/OL]. https://arxiv.org/abs/2009.04496https://arxiv.org/abs/2009.04496.
AMARO-SEOANE P, AUDLEY H,BABAK S, et al(LISA Collaboration). Laser interferometer space antenna[EB/OL]. http://arxiv.org/abs/1702.00786http://arxiv.org/abs/1702.00786.
SATO S, KAWAMURA S, ANDO M, et al. The status of DECIGO[C]//Journal of Physics: Conference Series. IOP Publishing, 2017, 840(1): 012010.
HU Y M, MEI J W, LUO J.Science prospects for space-borne gravitational-wave missions[J]. National Science Review, 2017, 4(5): 683-684.
ABBOTT B P, ABBOTT T D, ABRAHAM S, et al(LIGO scientific Collaboration and Virgo Collaboration).Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1[J]. Physical Review D, 2019, 100(10): 104036.
LIGO Scientific Collaboration, Virgo Collaboration,ABBOTT R, et al. Tests of general relativity with binary black holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog[EB/OL]. http://arxiv.org/abs/2010.14529http://arxiv.org/abs/2010.14529.
LOVELOCK D. The Einstein tensor and its generalizations[J]. Journal of Mathematical Physics, 1971, 12(3): 498-501.
CLIFTON T, FERREIRA P G, PADILLA A, et al. Modified gravity and cosmology[J]. Physics Reports, 2012, 513(1-3): 1-189.
WILL C M. The confrontation between general relativity and experiment[J]. Living Reviews in Relativity, 2014, 17(1): 4.
GONG Y G, HOU S Q. Gravitational wave polarizations in f (R) gravity and scalar-tensor theory[C]// EPJ Web of Conferences. EDP Sciences, 2018, 168: 01003.
KAUSAR H R, PHILIPPOZ L, JETZER P. Gravitational wave polarization modes in f (R) theories[J]. Physical Review D, 2016, 93(12): 124071.
MAGGIORE M, NICOLIS A. Detection strategies for scalar gravitational waves with interferometers and resonant spheres[J]. Physical Review D, 2000, 62(2): 024004.
CAPOZZIELLO S, CORDA C. Scalar gravitational waves from scalar-tensor gravity: production and response of interferometers[J]. International Journal of Modern Physics D, 2006, 15(7): 1119-1150.
BLAS D, SANCTUARY H. Gravitational radiation in Hořava gravity[J]. Physical Review D, 2011, 84(6): 064004.
HOU S Q, GONG Y G, LIU Y Q. Polarizations of gravitational waves in Horndeski theory[J]. The European Physical Journal C, 2018, 78(5): 378.
JACOBSON T, MATTINGLY D.Gravity with a dynamical preferred frame[J].Physical Review D, 2001, 64: 024028.
GONG Y, HOU S, LIANG D.Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817[J]. Physical Review D,2010, 97: 084040.
SAGI E. Propagation of gravitational waves in the generalized tensor-vector-scalar theory[J]. Physical Review D, 2010, 81(6): 064031.
DE PAULA W L S, MIRANDA O D, MARINHO R M. Polarization states of gravitational waves with a massive graviton[J]. Classical and Quantum Gravity, 2004, 21(19): 4595.
WILL C M. Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries[J]. Physical Review D, 1998, 57(4): 2061.
CARDOSO V, GUALTIERI L. Testing the black hole ‘no-hair’ hypothesis[J]. Classical and Quantum Gravity, 2016, 33(17): 174001.
GEROCH R. MULTIPOLE M. II. Curved space[J]. Journal of Mathematical Physics, 1970, 11(8): 2580-2588.
HANSEN R O. Multipole moments of stationary space‐times[J]. Journal of Mathematical Physics, 1974, 15(1): 46-52.
THORNE K S. Gravitational-wave research: current status and future prospects[J]. Reviews of Modern Physics, 1980, 52(2): 285.
GÜRSEL Y. Multipole moments for stationary systems: the equivalence of the Geroch-Hansen formulation and the Thorne formulation[J]. General Relativity and Gravitation, 1983, 15(8): 737-754.
SUVOROV A G, MELATOS A. Testing modified gravity and no-hair relations for the Kerr-Newman metric through quasiperiodic oscillations of galactic microquasars[J]. Physical Review D, 2016, 93(2): 024004.
KLEIHAUS B, KUNZ J, MOJICA S. Quadrupole moments of rapidly rotating compact objects in dilatonic Einstein-Gauss-Bonnet theory[J]. Physical Review D, 2014, 90(6): 061501.
VIGELAND S J. Multipole moments of bumpy black holes[J]. Physical Review D, 2010, 82(10): 104041.
MUKHERJEE S, CHAKRABORTY S. Multipole moments of compact objects with NUT charge: theoretical and observational implications[EB/OL]. https://arxiv.org/abs/2008.06891https://arxiv.org/abs/2008.06891, 2020.
ABBOTT B P, LIGO Scientific Collaboration, Virgo Collaboration, et al. Tests of general relativity with GW150914[J]. Physical Review Letters, 2016, 116(22): 221101.
ABBOTT B P, LIGO Scientific Collaboration, Virgo Collaboration, et al. Binary black hole mergers in the first advanced LIGO observing run[J]. Physical Review X, 2016, 6(4): 041015.
YUNES N, PRETORIUS F. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework[J]. Physical Review D, 2009, 80(12): 122003.
CHAMBERLAIN K, YUNES N. Theoretical physics implications of gravitational wave observation with future detectors[J]. Physical Review D, 2017, 96(8): 084039.
WANG H T, JIANG Z, SESANA A, et al. Science with the TianQin observatory: preliminary results on massive black hole binaries[J]. Physical Review D, 2019, 100(4): 043003.
LIU S, HU Y M, ZHANG J D, et al. Science with the TianQin observatory: preliminary results on stellar-mass binary black holes[J]. Physical Review D, 2020, 101(10): 103027.
FENG W F, WANG H T, HU X C, et al. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin[J]. Physical Review D, 2019, 99(12): 123002.
HAGIHARA Y, ERA N, IIKAWA D, et al. Probing gravitational wave polarizations with Advanced LIGO, Advanced Virgo, and KAGRA[J]. Physical Review D, 2018, 98(6): 064035.
NISHIZAWA A, TARUYA A, HAYAMA K, et al. Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers[J]. Physical Review D, 2009, 79(8): 082002.
ISI M, WEINSTEIN A J, MEAD C, et al. Detecting beyond-Einstein polarizations of continuous gravitational waves[J]. Physical Review D, 2015, 91(8): 082002.
PHILIPPOZ L, JETZER P. Detecting additional polarization modes with LISA[C]// Journal of Physics: Conference Series,2017, 840: 012057.
HUANG S J, HU Y M, KOROL V, et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries[J]. Physical Review D, 2020, 102(6): 063021.
BAO J H, SHI C F, WANG H T, et al. Constraining modified gravity with ringdown signals: An explicit example[J]. Physical Review D, 2019, 100(8): 084024.
SHI C F, BAO J H, WANG H T, et al. Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals[J]. Physical Review D, 2019, 100(4): 044036.
FAN H M, HU Y M, BARAUSSE E, et al. Science with the TianQin observatory: preliminary result on extreme-mass-ratio inspirals[J]. Physical Review D, 2020, 102(6): 063016.
LIU M X, ZHANG J D. Augmented analytic kludge waveform with quadrupole moment correction[EB/OL]. https://arxiv.org/abs/2008.11396https://arxiv.org/abs/2008.11396.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构