1.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
2.武汉大学电子信息学院,湖北 武汉 430072
3.武汉大气遥感国家野外科学观测研究站,湖北 武汉430072
刘祺(1981年生),男;研究方向:精密测量物理;E-mail: liuq239@mail.sysu.edu.cn
何芸(1987年生),男;研究方向:精密光学器件与激光雷达;E-mail: heyun@whu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-08,
收稿日期:2020-11-06,
录用日期:2020-11-22
扫 描 看 全 文
刘祺,何芸,段会宗等.地月激光测距角反射器研制进展[J].中山大学学报(自然科学版),2021,60(01):239-246.
LIU Qi,HE Yun,DUAN Huizong,et al.Progress on the design of retroreflector for lunar laser ranging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):239-246.
刘祺,何芸,段会宗等.地月激光测距角反射器研制进展[J].中山大学学报(自然科学版),2021,60(01):239-246. DOI: 10.13471/j.cnki.acta.snus.2020.11.06.2020B119.
LIU Qi,HE Yun,DUAN Huizong,et al.Progress on the design of retroreflector for lunar laser ranging[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):239-246. DOI: 10.13471/j.cnki.acta.snus.2020.11.06.2020B119.
月球激光测距在广义相对论的检验以及地月系统的理解上做出了巨大贡献。然而由于月球天平动效应的影响,约50年前安置在月球上的阵列式角反射器将单个回波光子对应的测距精度限制在了厘米级的水平。为了进一步提升测距精度,需要部署新一代单体大孔径的激光角反射器。本文主要介绍我们170 mm有效孔径的中空激光角反射器的研制进展。测试结果表明,我们实现了空心激光角反射器三个二面角的精度分别为0.10″,0.30″和0.24″。远场衍射图样模拟表明,该样机能够达到理想Apollo 11/14反射器阵列68.5%返回信号强度。我们期望这种空心激光角反射器可以应用于新一代的月球激光测距。
Lunar laser ranging has made great contributions to the tests of general relativity and the understanding of the Earth-Moon system. However, because of the lunar libration, corner cube retroreflector arrays installed on the Moon about 50 years ago currently limit the laser-ranging precision for a single photon received to centimeter level. Here we mainly introduce the latest progress of developing a 170 mm aperture single and hollow corner cube retroreflector. The measurement shows that three dihedral angle offsets realize 0.10, 0.30, and 0.24 arcsec, respectively. According to the simulation of far field diffraction pattern, this prototype can achieve about 68.5 % optical intensity reflected from ideal Apollo 11 or 14 arrays. We anticipate that this hollow corner cube retroreflector can be applied to the next generation lunar laser ranging.
地月激光测距激光角反射器
lunar laser rangingretroreflector
ADELBERGER E, HECKEL B, NELSON A. Tests of the gravitational inverse-square law [J]. Annual Review of Nuclear and Particle Science, 2003, 53: 77-121.
MURPHY T, ADELBERGER E, STRASBURG J, et al. Testing gravity via next-generation lunar laser-ranging [J]. Nuclear Physics B (Proceedings Supplements), 2004, 134: 155-162.
MÜLLER J, WILLIAMS J, TURYSHEV S, et al. Potential capabilities of lunar laser ranging for geodesy and relativity. Dynamic Planet [M]// TREGONING P, et al, eds.Symposium (Cairns), 2007, 130: 903-909.
MÜLLER J, HOFMANN F, BISKUPEK L. Variations of the gravational constant from lunar laser ranging data [J]. Classical and Quantum Gravity, 2007, 24: 4533-4538.
MÜLLER J, HOFMANN F, BISKUPEK L. Testing various facets of the equivalence principle using lunar laser ranging [J]. Classical and Quantum Gravity, 2012, 29: 184006.
WILLIAMS J, TURYSHEV S, BOGGS D. Progress in lunar laser ranging tests of relativistic gravity [J]. Physical Review Letters, 2004, 93: 261101.
WILLIAMS J, TURYSHEV S, BOGGS D. Lunar laser ranging tests of the equivalence principle with the Earth and Moon [J]. International Journal of Modern Physics D, 2009, 18: 1129-1175.
WILLIAMS J, TURYSHEV S, BOGGS D. Lunar laser ranging tests of the equivalence principle [J]. Classical and Quantum Gravity, 2012, 29: 184004.
HOFFMANN F, MÜLLER J, BISKUPEK L. Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant [J]. Astronomy and Astrophysics, 2010,522: L5.
DICKEY J, BENDER P, FALLER J, et al. Lunar laser ranging: A continuing legacy of the Apollo program [J]. Science, 1994, 265: 482-490.
KHAN A, MOSEGAARD K, WILLIAMS J, et al. Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector [J]. Journal of Geophysics Research: Planets, 2004, 109: E09007.
BENDER P, CURRIE D, DICKE R H, et al. The lunar laser ranging experiment [J]. Science, 1973, 182(4109): 229-238.
ALLEY C, BENDER P, CURRIE D, et al. Laser ranging retroreflector [R]. NASA Special Publication, 1971, 214(3918): 163.
MURPHY T, ADELBERGER E, BATTAT J, et al. The apache point observatory lunar laser-ranging operation: Instrument description and first detections [J]. Publications of the Astronomical Society of the Pacific, 2008, 120: 20-37.
MURPHY T. Lunar laser ranging: the millimeter challenge [J]. Reports on Progress in Physics, 2013, 76: 076901.
SAMAIN E, MANGIN J F, VEILLET C, et al. Millimetric lunar laser ranging at OCA (Observatoire de la Côte d'Azur) [J]. Astronomy and Astrophysics Supplement Series, 1998, 130(2): 235-244.
CHABÉ J, COURDE C, TORRE J M, et al. Recent progress in lunar laser ranging at Grasse laser ranging station [J]. Earth and Space Science, 2020, 7: e2019EA000785.
COURDE C, TORRE J M, SAMAIN E, et al. Lunar laser ranging in infrared at the Grasse laser station [J]. Astronomy and Astrophysics, 2017, 602: A90.
李语强, 伏红林, 李荣旺, 等. 云南天文台月球激光测距研究与实验[J]. 中国激光, 2019, 46(1): 0104004.
LI Y Q, FU H L, LI R W, et al. Research and experiment of lunar laser ranging in Yunnan Observatories [J]. Chinese Journal of Lasers, 2019, 46(1): 0104004.
OTSUBO T, KUNIMORI H, NODA H, et al. Simulation of optical response of retroreflectors for future lunar laser ranging[J]. Advances in Space Research, 2010, 45: 733-740.
MURPHY T, ADELBERGER E, BATTAT J, et al. Long-term degradation of optical devices on the Moon [J]. Icarus, 2010,208: 31-35.
ROBERTSON D, FITZSIMONS E, KILLOW C, et al. Construction and testing of the optical bench for LISA Pathfinder [J]. Classical Quantum Gravity, 2013, 30: 085006.
OTSUBO T, KUNIMORI H, NODA H, et al. Asymmetric dihedral angle offsets for large-size lunar laser ranging retroreflectors [J]. Earth, Planets and Space, 2011, 63: e13-e16.
HE Y, LIU Q, DUAN H, et al. Manufacture of a hollow corner-cube retroreflector for next generation of lunar laser ranging [J]. Research in Astronomy and Astrophysics, 2018, 18(11): 136.
CURRIE D, DELL’AGNELLO S, MONACHE G, et al. A lunar laser ranging retroreflector array for the 21st century [J]. Acta Astronautica, 2011, 68: 667-680.
MARTINI M, DELL′AGNELLO S, CURRIE D, et al. MoonLIGHT: A USA-Italy lunar laser ranging retroreflector array for the 21st century [J]. Planetary and Space Science, 2012, 74: 276-282.
TURYSHEV S, WILLIAMS J, FOLKNER W, et al. Corner-cube retro-reflector instrument for advanced lunar laser ranging [J]. Experimental Astronomy, 2013, 36: 105-135.
PRESTON A, MERKOWITZ S. Next-generation hollow retroreflectors for lunar laser ranging [J]. Applied Optics, 2013, 52(36): 8676-8684.
PRESTON A, MERKOWITZ S. Comparison of fabrication techniques for hollow retroreflectors [J]. Optical Engineering, 2014, 53(6):065107.
ARAKI H, KASHIMA S, NODA H, et al. Thermo-optical simulation and experiment for the assessment of single, hollow, and large aperture retroreflector for lunar laser ranging [J]. Earth, Planets and Space, 2016, 68(101): 1-12.
CIOCCI E, MARTINI M, CONTESSA S, et al. Performance analysis of next-generation lunar laser retroreflectors [J]. Advances in Space Research, 2017, 60: 1300-1306.
OREB B F, BURKE J, NETTERFIELD R P,et al. Development of precision double corner cubes for the Space Interferometer Mission [C/OL]//Proc SPIE 6292. Interferometry XIII:Techniques and Analysis, 629202 ,2006. https://doi.org/10.1117/12.680094https://doi.org/10.1117/12.680094.
BURKE J, OREB B F, PLATT B C, et al. Precision metrology of dihedral angle error in prisms and corner cubes for the Space Interferometry Mission [C/OL]//Proc SPIE 5869. Optical Manufacturing and Testing VI,58690W,2005.https://doi.org/10.1117/ 12.613591https://doi.org/10.1117/12.613591.
HE Y, LIU Q, HE J, et al. Development of a 170-mm hollow corner cube retroreflector for the future lunar laser ranging [J]. Chinese Physics B, 2018,10(27): 100701.
HE Y, LIU Q, HE J, et al. External right-angle measurement using a two-autocollimator system [J]. Applied Optics, 2019, 58(4): 1158-1163.
HE Y, LIU Q, DUAN H, et al. A 170mm hollow corner cube retro-reflector on Chang′e 4 lunar relay satellite [C]//Proceedings of the 20th International Workshop on Laser Ranging. Potsdam, Germany, 2016.
何芸,刘祺,田伟,等.地月第二拉格朗日点卫星激光测距技术研究[J]. 深空探测学报,2017, 4(2):130-137.
HE Y,LIU Q,TIAN W,et al. Study on laser ranging for satellite on the second Lagrange point of Earth-Moon system [J]. Journal of Deep Space Exploration,2017,4(2):130-137.
WU W, YU D, WANG C, et al. Technological breakthroughs and scientific progress of the Chang’e-4 mission [J]. Science China Information Sciences, 2020, 63(10): 200201.
张立华, 熊亮, 孙骥, 等. 嫦娥四号任务中继星“鹊桥”技术特点 [J]. 中国科学(技术科学), 2019, 49: 138-146.
ZHANG L H, XIONG L, SUN J, et al. Technical characteristics of the relay communication satellite “Queqiao” for Chang’e-4 lunar far side exploration mission [J]. Scientia Sinica Technologica, 2019, 49: 138-146.
SUN X, SMITH D, HOFFMAN E, et al. Small and lightweight laser retro-reflector arrays for lunar landers [J]. Applied Optics, 2019, 58(33): 9259-9266.
MAZARICO E, SUN X, TORRE J M, et al. First two‑way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO’s retro‑reflector array [J]. Earth, Planets and Space, 2020, 72: 113.
0
浏览量
1
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构