1.中国科学院上海天文台,上海 200030
2.中国科学院大学天文与空间科学学院,北京 100049
杨舒程(1993年生),男;研究方向:引力波天文学;E-mail:ysc@shao.ac.cn
韩文标(1980年生),男;研究方向:引力波天文学;E-mail:wbhan@shao.ac.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-06,
录用日期:2020-11-17
扫 描 看 全 文
杨舒程,韩文标.低频引力波波形模板介绍[J].中山大学学报(自然科学版),2021,60(01):99-111.
YANG Shucheng,HAN Wenbiao.Introduction of templates for low-frequency gravitational waves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):99-111.
杨舒程,韩文标.低频引力波波形模板介绍[J].中山大学学报(自然科学版),2021,60(01):99-111. DOI: 10.13471/j.cnki.acta.snus.2020.11.06.2020B118.
YANG Shucheng,HAN Wenbiao.Introduction of templates for low-frequency gravitational waves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):99-111. DOI: 10.13471/j.cnki.acta.snus.2020.11.06.2020B118.
引力波的探测和参数估计依赖于匹配滤波技术。而匹配滤波需要大量理论计算的引力波波形,称为波形模板。空间引力波探测器主要探测低频引力波,这些信号的持续时间长,从几天到几年不等,对理论波形的精度要求高;同时一些低频波源的构型复杂,往往带有大偏心率和轨道进动,使得波形参数空间很大,需要的模板数量巨大。因此对于空间引力波探测,多数波形模板在计算精度和效率上的要求要比地面引力波探测更高。本文回顾了低频引力波的一些主要波源(超大质量双黑洞、极端质量比旋近、河内致密双星)的波形模板研究,总结了这些模板的特点,展望了低频引力波天文学研究的未来。
Matched filtering is critical in the detection and parameter estimation of gravitational waves (GWs). The application of matched filtering requires waveform templates, which are lots of GW waveforms from theoretical calculations. Space-borne GW detectors aim at low-frequency GWs. These signals have long timescales, ranging from several days to several years, and require theoretical waveforms with high accuracy. Moreover, some low-frequency GW sources have complicated configurations, such as large eccentricities and precession, which leads to a large parameter space of waveforms, and numerous templates are required. Therefore, comparing with ground-based GW detection, space-borne GW detection requires more efficiency and quality for most waveform templates. In this paper, we first review some waveform templates of primary low-frequency GW sources (supermassive binary black holes, extreme-mass-ratio inspirals, and compact binary stars in the Galaxy). Then we summarize the characteristics of these templates and look into the future of the research for low-frequency GW astronomy.
低频引力波匹配滤波数据处理
low-frequency gravitational wavesmatched filteringdata processing
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters, 2016, 116(6): 061102.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs [J]. Physical Review X, 2019, 9(3): 031040.
DANZMANN K. THE LISA STUDY TEAM. LISA: Laser interferometer space antenna for gravitational wave measurements [J]. Classical and Quantum Gravity, 1996, 13(11A): A247.
LUO J, CHEN L S, DUAN H Z, et al. Tianqin: A space-borne gravitational wave detector [J]. Classical and Quantum Gravity, 2016, 33(3): 035010.
HU W R, WU Y L. The taiji program in space for gravitational wave physics and the nature of gravity [J]. National Science Review, 2017, 4(5):685-686.
DANZMANN K, AMARO-SEOANE P, AUDLEY H, et al. A proposal in response to the ESA call for L3 mission concepts [EB/OL]. (2017-02-23)[2020-11-18]. https://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdfhttps://arxiv.org/ftp/arxiv/papers/1702/1702.00786.pdf.
GLAMPEDAKIS K. Extreme mass ratio inspirals: LISA's unique probe of black hole gravity [J]. Classical and Quantum Gravity, 2005, 22(15): S605.
AMARO-SEOANE P, GAIR J R, FREITAG M, et al. Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA [J]. Classical and Quantum Gravity, 2007, 24(17): R113.
HINDERER T, FLANAGAN E E. Two-timescale analysis of extreme mass ratio inspirals in Kerr spacetime: Orbital motion[J]. Physical Review D, 2008, 78(6): 064028.
FINN L S. Detection, measurement, and gravitational radiation[J]. Physical Review D, 1992, 46(12): 5236.
PRETORIUS F. Evolution of binary black-hole spacetimes[J]. Physical Review Letters, 2005, 95(12): 121101.
BUONANNO A, DAMOUR T. Effective one-body approach to general relativistic two-body dynamics[J]. Physical Review D, 1999, 59(8): 084006.
BUONANNO A, DAMOUR T. Transition from inspiral to plunge in binary black hole coalescences[J]. Physical Review D, 2000, 62(6): 064015.
TARACCHINI A, BUONANNO A, PAN Y, et al. Effective-one-body model for black-hole binaries with generic mass ratios and spins[J]. Physical Review D, 2014, 89(6): 061502.
PÜRRER M. Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries[J]. Classical and Quantum Gravity, 2014, 31(19): 195010.
HANNAM M, SCHMIDT P, BOHÉ A, et al. Simple model of complete precessing black-hole-binary gravitational waveforms[J]. Physical Review Letters, 2014, 113(15): 151101.
HUSA S, KHAN S, HANNAM M, et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal[J]. Physical Review D, 2016, 93(4): 044006.
KHAN S, HUSA S, HANNAM M, et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era[J]. Physical Review D, 2016, 93(4): 044007.
LOUSTO C O, ZLOCHOWER Y. Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity [EB/OL]. (2011-07-01)[2020-11-18]. https://arxiv.org/pdf/1009.0292v2.pdfhttps://arxiv.org/pdf/1009.0292v2.pdf.
GAIR J R, BARACK L, CREIGHTON T, et al. Event rate estimates for LISA extreme mass ratio capture sources[J]. Classical and Quantum Gravity, 2004, 21(20): S1595.
GLAMPEDAKIS K, HUGHES S A, KENNEFICK D. Approximating the inspiral of test bodies into Kerr black holes[J]. Physical Review D, 2002, 66(6): 064005.
ALLEN B, ANDERSON W G, BRADY P R, et al. FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries[J]. Physical Review D, 2012, 85(12): 122006.
BUONANNO A, IYER B R, OCHSNER E, et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors[J]. Physical Review D, 2009, 80(8): 084043.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Effects of waveform model systematics on the interpretation of GW150914[J]. Classical and Quantum Gravity, 2017, 34(10): 104002.
DAMOUR T, NAGAR A. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries[J]. Physical Review D, 2007, 76(6): 064028.
DAMOUR T, IYER B R, NAGAR A. Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries[J]. Physical Review D, 2009, 79(6): 064004.
PAN Y, BUONANNO A, FUJITA R, et al. Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries[J]. Physical Review D, 2011, 83(6): 064003.
BERTI E, CARDOSO V, WILL C M. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA[J]. Physical Review D, 2006, 73(6): 064030.
LONDON L, SHOEMAKER D, HEALY J. Modeling ringdown: Beyond the fundamental quasinormal modes[J]. Physical Review D, 2014, 90(12): 124032.
DAMOUR T, NAGAR A, HANNAM M, et al. Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries[J]. Physical Review D, 2008, 78(4): 044039.
MROUE A H, SCHEEL M A, SZILAGYI B, et al. Catalog of 174 binary black hole simulations for gravitational wave astronomy[J]. Physical Review Letters, 2013, 111(24): 241104.
BOYLE M, BUONANNO A, KIDDER L E, et al. High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants[J]. Physical Review D, 2008, 78(10): 104020.
LOVELACE G, BOYLE M, SCHEEL M A, et al. High-accuracy gravitational waveforms for binary black hole mergers with nearly extremal spins[J]. Classical and Quantum Gravity, 2012, 29(4): 045003.
DAMOUR T, NAGAR A, POLLNEY D, et al. Energy versus angular momentum in black hole binaries[J]. Physical Review Letters, 2012, 108(13): 131101.
BUCHMAN L T, PFEIFFER H P, SCHEEL M A, et al. Simulations of non-equal mass black hole binaries with spectral methods[J]. Physical Review D, 2012, 86: 084033.
NAGAR A, DAMOUR T, REISSWIG C, et al. Energetics and phasing of nonprecessing spinning coalescing black hole binaries[J]. Physical Review D, 2016, 93(4): 044046.
PAN Y, BUONANNO A, BOYLE M, et al. Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism[J]. Physical Review D, 2011, 84(12): 124052.
TARACCHINI A, PAN Y, BUONANNO A, et al. Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms[J]. Physical Review D, 2012, 86(2): 024011.
DAMOUR T, NAGAR A. New effective-one-body description of coalescing nonprecessing spinning black-hole binaries[J]. Physical Review D, 2014, 90(4): 044018.
BOHÉ A, SHAO L, TARACCHINI A, et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors[J]. Physical Review D, 2017, 95(4): 044028.
PAN Y, BUONANNO A, TARACCHINI A, et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism[J]. Physical Review D, 2014, 89(8): 084006.
AJITH P, BABAK S, CHEN Y, et al. A phenomenological template family for black-hole coalescence waveforms[J]. Classical and Quantum Gravity, 2007, 24(19): S689.
PAN Y, BUONANNO A, BAKER J G, et al. Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case[J]. Physical Review D, 2008, 77(2): 024014.
AJITH P, HANNAM M, HUSA S, et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins[J]. Physical Review Letters, 2011, 106(24): 241101.
SANTAMARIA L, OHME F, AJITH P, et al. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries[J]. Physical Review D, 2010, 82(6): 064016.
SCHMIDT P, HANNAM M, HUSA S, et al. Tracking the precession of compact binaries from their gravitational-wave signal[J]. Physical Review D, 2011, 84(2): 024046.
SCHMIDT P, HANNAM M, HUSA S. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals[J]. Physical Review D, 2012, 86(10): 104063.
BOYLE M, HEMBERGER D, IOZZO D A B, et al. The SXS Collaboration catalog of binary black hole simulations[J]. Classical and Quantum Gravity, 2019, 36(19): 195006.
MERRITT D. Dynamics and evolution of galactic nuclei[M]. Princeton, New Jersery: Princeton University Press, 2013.
BERRY C P L, GAIR J R. Observing the Galaxy's massive black hole with gravitational wave bursts[J]. Monthly Notices of the Royal Astronomical Society, 2013, 429(1): 589-612.
GAIR J R. The black hole symphony: probing new physics using gravitational waves[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1884): 4365-4379.
GAIR J R, VALLISNERI M, LARSON S L, et al. Testing general relativity with low-frequency, space-based gravitational-wave detectors[J]. Living Reviews in Relativity, 2013, 16(1): 7.
BARACK L, CUTLER C. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy[J]. Physical Review D, 2004, 69(8): 082005.
CHUA A J K, MOORE C J, GAIR J R. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals[J]. Physical Review D, 2017, 96(4): 044005.
ARNAUD KA, BABAK S. An overview of the mock LISA data challenges[C]// AIP Conference Proceedings, 2006, 873: 619-624.
ARNAUD K A, AUGER G, BABAK S, et al. Report on the first round of the mock LISA data challenges[J]. Classical and Quantum Gravity, 2007, 24(19): S529.
BABAK S, BAKER J G, BENACQUISTA M J, et al. Report on the second mock LISA data challenge[J]. Classical and Quantum Gravity, 2008, 25(11): 114037.
BABAK S, BAKER J G, BENACQUISTA M J, et al. The mock LISA data challenges: from challenge 1b to challenge 3[J]. Classical and Quantum Gravity, 2008, 25(18): 184026.
BABAK S, BAKER J G, BENACQUISTA M J, et al. The mock LISA data challenges: from challenge 3 to challenge 4[J]. Classical and Quantum Gravity, 2010, 27(8): 084009.
BABAK S, GAIR J R, PORTER E K. An algorithm for the detection of extreme mass ratio inspirals in LISA data[J]. Classical and Quantum Gravity, 2009, 26(13): 135004.
BARACK L. Gravitational self-force in extreme mass-ratio inspirals[J]. Classical and Quantum Gravity, 2009, 26(21): 213001.
BARACK L, SAGO N. Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole[J]. Physical Review D, 2007, 75(6): 064021.
WARBURTON N, BARACK L. Self-force on a scalar charge in Kerr spacetime: Eccentric equatorial orbits[J]. Physical Review D, 2011, 83(12): 124038.
POUND A. Second-order perturbation theory: problems on large scales[J]. Physical Review D, 2015, 92(10): 104047.
HARTL M D, BUONANNO A. Dynamics of precessing binary black holes using the post-Newtonian approximation[J]. Physical Review D, 2005, 71(2): 024027.
HAN W B. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit[J]. Physical Review D, 2010, 82(8): 084013.
HAN W B, CAO Z J. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals[J]. Physical Review D, 2011, 84(4): 044014.
HAN W B. Gravitational waves from extreme-mass-ratio inspirals in equatorially eccentric orbits[J]. International Journal of Modern Physics D, 2014, 23(7): 1450064.
HAN W B. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits[J]. Classical and Quantum Gravity, 2016, 33(6): 065009.
TEUKOLSKY S A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations[J]. The Astrophysical Journal, 1973, 185: 635-648.
HAN W B, CAO Z J, HU Y M. Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity[J]. Classical and Quantum Gravity, 2017, 34(22): 225010.
CAO Z J, HAN W B. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism[J]. Physical Review D, 2017, 96(4): 044028.
BABAK S, FANG H, GAIR J R, et al. “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole[J]. Physical Review D, 2007, 75(2): 024005.
PETERS P C, MATHEWS J. Gravitational radiation from point masses in a Keplerian orbit[J]. Physical Review, 1963, 131(1): 435.
GAIR J R, GLAMPEDAKIS K. Improved approximate inspirals of test bodies into Kerr black holes[J]. Physical Review D, 2006, 73(6): 064037.
HUGHES S A. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms[J]. Physical Review D, 2001, 64(6): 064004.
DRASCO S, HUGHES S A. Gravitational wave snapshots of generic extreme mass ratio inspirals[J]. Physical Review D, 2006, 73(2): 024027.
HUERTA E A, GAIR J R. Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals[J]. Physical Review D, 2009, 79(8): 084021.
GAIR J R, FLANAGAN E E, DRASCO S, et al. Forced motion near black holes[J]. Physical Review D, 2011, 83(4): 044037.
WARBURTON N, AKCAY S, BARACK L, et al. Evolution of inspiral orbits around a Schwarzschild black hole[J]. Physical Review D, 2012, 85(6): 061501.
CHUA A J K, GAIR J R. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis[J]. Classical and Quantum Gravity, 2015, 32(23): 232002.
XIN S, HAN W B, YANG S C. Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics[J]. Physical Review D, 2019, 100(8): 084055.
KONOPLYA R, REZZOLLA L, ZHIDENKO A. General parametrization of axisymmetric black holes in metric theories of gravity[J]. Physical Review D, 2016, 93(6): 064015.
BERRY C P L, COLE R H, CANIZARES P, et al. Importance of transient resonances in extreme-mass-ratio inspirals[J]. Physical Review D, 2016, 94(12): 124042.
FLANAGAN E E, HINDERER T. Transient resonances in the inspirals of point particles into black holes[J]. Physical Review Letters, 2012, 109(7): 071102.
NELEMANS G, YUNGELSON L R, ZWART S F P. The gravitational wave signal from the Galactic disk population of binaries containing two compact objects[J]. Astronomy & Astrophysics, 2001, 375(3): 890-898.
PETERS P C. Gravitational radiation and the motion of two point masses[J]. Physical Review, 1964, 136(4B): B1224.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构