1.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
2.华中科技大学物理学院, 湖北 武汉 430074
胡一鸣(1989年生),男;研究方向:引力波天文学、引力波数据处理;E-mail: huyiming@sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-13,
收稿日期:2020-11-05,
录用日期:2020-11-13
扫 描 看 全 文
胡一鸣,梁正程,范会敏.引力波数据处理技术[J].中山大学学报(自然科学版),2021,60(01):112-122.
HU Yiming,LIANG Zhengcheng,FAN Huimin.Techniques for gravitational wave data analysis[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):112-122.
胡一鸣,梁正程,范会敏.引力波数据处理技术[J].中山大学学报(自然科学版),2021,60(01):112-122. DOI: 10.13471/j.cnki.acta.snus.2020.11.05.2020B117.
HU Yiming,LIANG Zhengcheng,FAN Huimin.Techniques for gravitational wave data analysis[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):112-122. DOI: 10.13471/j.cnki.acta.snus.2020.11.05.2020B117.
空间引力波探测是天文学、物理学未来数十年的发展重点和科研热点。而,空间引力波探测的科学目标,必须经由数据处理实现。因此,结合实际空间引力波探测器,开展数据处理研究,是兑现空间引力波探测科学价值的必要保证。本文针对空间引力波探测,结合天琴,介绍了引力波数据处理中的匹配滤波概念,并对引力波信号探测及参数估计进行了论述。
Space-borne gravitational wave detection has been the research focus and hotspot for the field of astronomy and physics and will continue to be so. The scientific goal of space-borne gravitational wave missions must be achieved through data analysis. Therefore, to carry out data processing research combined with actual space-borne gravitational wave detectors is an important premise for achieving the scientific goal of space-borne gravitational wave missions. We based on the space-borne gravitational wave missions TianQin and introduce the concept of matched filtering in gravitational wave data analysis. Furthermore, we introduce some basic concepts related to gravitational wave signal detection and parameter estimation.
引力波数据处理天琴
gravitational wavesdata analysisTianQin
WEBER J.Evidence for discovery of gravitational radiation [J].Physical Review Letters, 1969, 22:1320.
HOUGH J. Essay review, gravitational waves under the microscope [J].Annals of Science,2006,63:371-375.
BICEP2 Collaboration. Detection of B-mode polarization at degree angular scales by BICEP2 [J].Physical Review Letters, 2014, 112:241101.
BICEP2/Keck and Planck Collaborations. Joint analysis of BICEP2/Keck array and planck data [J]. Physical Review Letters, 2014, 114:101301.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters,2016, 116: 061102.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). Binary black hole mergers in the first advanced LIGO observing run [J]. Physical Review X, 2016, 6: 041015.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). GW170104: observation of a 50-Solar-Mass binary black hole coalescence at Redshift 0.2 [J]. Physical Review Letters ,2017,118: 221101.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence [J]. Physical Review Letters, 2017, 119: 141101.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). GW170817: observation of gravitational waves from a binary neutron star inspiral [J]. Physical Review Letters, 2017, 119: 161101.
ABBOTT B P,et al(LIGO Scientific Collaboration,CollaborationVirgo). GW170608: observation of a 19-solar-mass binary black hole coalescence [J].Astrophysical Journal Letters, 2017, 851: L35.
LIGO Scientific Collaboration,Virgo Collaboration,FERMI G B M,et al. Multi-Messenger observations of a binary neutron star merger [J]. Astrophysical Journal Letters,2017, 848: L12.
胡一鸣. 引力波数据分析[EB/OL]. https://github.com/yiminghu-SYSU/GW_DA_noteshttps://github.com/yiminghu-SYSU/GW_DA_notes.
HU Y M. Gravitational wave data analysis[EB/OL]. https://github.com/yiminghu-SYSU/GW_DA_noteshttps://github.com/yiminghu-SYSU/GW_DA_notes.
HU Y M,MEI J W, LUO J. Science prospects for space-borne gravitational-wave missions [J]. National Science Review,2017, 4: 683.
VALLISNERI M. Use and abuse of the fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects [J]. Physical Review D, 2008, 77:042001.
BABAK S, BAKER J G, BENACQUISTA M J, et al. The mock LISA data challenges: from challenge 3 to challenge 4 [J].Classical and Quantum Gravity,2010, 27:084009.
ARNAUD K, BABAK S, BAKER J G, et al. An overview of the mock LISA data challenges [C]//AIP Conference Proceedings, 2006,873:619.
HU Y M. Novel inference methods for gravitational wave astrophysics [D]. Scotland, UK :University of Glasgow,2015.
LEE S, FIN N. Detection, measurement, and gravitational radiation [J]. Physical Review D, 1992,46:5236.
HU X, LI X, WANG Y,et al. Fundamentals of the orbit and response for TianQin [J]. Classical and Quantum Gravity, 2018, 35:03368.
FENG W, WANG H, HU X,et al. Preliminary study on parameter estimation accuracy of super massive black hole binary inspirals for TianQin [J]. Physical Review D, 2019, 99:123002.
WANG H, JIANG Z, SESANA A,et al. Science with the TianQin observatory: Preliminary results on massive black hole binaries [J]. Physical Review D,2019, 100:043003.
SHI C, BAO J, WANG H,et al. Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals [J]. Physical Review D,2019, 100:044036.
LIU S, HU Y, ZHANG J, et al. Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes [J].Physical Review D,2020,101:103027.
HUANG S, HU Y, KOROL V,et al. Science with the TianQin observatory: Preliminary results on Galactic double white dwarf binaries [J].Physical Review D,2020,102:063021.
FAN H, HU Y, BARAUSSE E,et al. Science with the TianQin observatory: Preliminary results on extreme-mass-ratio inspirals [J]. Physical Review D,2020,102:063016.
JARANOWSKI P, KRÓLAK A, BERNARD F,et al. Data analysis of gravitational-wave signals from spinning neutron stars I, the signal and its detection [J].Physical Review D,1998, 58:063001.
BECKER W. Neutron stars and pulsars[M]. Princeton, Germany : Springer, 2009.
ROMANO J, CORNISH N. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment [J]. Living Reviews in Relativity, 2017,20:2.
ALLEN B. The Stochastic gravity wave background: sources and detection [EB/OL].https://arxiv.org/abs/gr-qc/9604033https://arxiv.org/abs/gr-qc/9604033.
ALLEN B, ROMANO J. Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities [J]. Physical Review D, 1997,59:102001.
CREIGHTON J, ANDERSON W. Gravitational-Wave physics and astronomy: an introduction to theory, experiment and data analysis [M].Wiley-VCH,2011.
GREGORY P. Bayesian logical data analysis for the physical sciences [M].Cambridge University Press,2005.
JAYNES E. Probability theory: the logic of science[M].Cambridge University Press, 2003.
HASTINGS W K. Monte carlo sampling methods using markov chains and their applications [J]. Biometrika, 1970, 57: 97-109.
SKILLING J. Nested sampling for general Bayesian computation [M].Bayesian Anal, 2006, 1:833.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构