1.华中科技大学引力中心,湖北 武汉 430074
2.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
范会敏 (1991年生),女;研究方向:引力波理论;E-mail:fanhm@hust.edu.cn
胡一鸣 (1989 年生),男;研究方向:引力波天文学、引力波数据处理;E-mail:huyiming@sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-14,
收稿日期:2020-11-05,
录用日期:2020-11-13
扫 描 看 全 文
范会敏,胡一鸣,訾铁光.极端质量比旋近及其探测[J].中山大学学报(自然科学版),2021,60(01):31-40.
FAN Huimin,HU Yiming,ZI Tieguang.The gravitational wave source of extreme-mass-ratio insprials and its detection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):31-40.
范会敏,胡一鸣,訾铁光.极端质量比旋近及其探测[J].中山大学学报(自然科学版),2021,60(01):31-40. DOI: 10.13471/j.cnki.acta.snus.2020.11.05.2020B116.
FAN Huimin,HU Yiming,ZI Tieguang.The gravitational wave source of extreme-mass-ratio insprials and its detection[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):31-40. DOI: 10.13471/j.cnki.acta.snus.2020.11.05.2020B116.
极端质量比旋近(EMRI)是指由恒星级质量天体与大质量黑洞组成的双星系统。它们在科学上具有着极高的价值,可以用来检验广义相对论以及探索黑洞的本质。本文描述EMRIs的形成图景、科学意义以及研究现状,通过计算天琴对EMRIs的探测视界距离、探测率和参数估计精度,获得了天琴对EMRIs的探测能力。我们发现:天琴可探测到红移
<math id="M1"><mi>z</mi><mo>∼</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483754&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483734&type=
6.60399961
2.28600001
处的EMRI引力波源,在乐观天文学模型下,天琴每年可探测到几十到上百个EMRIs事件,天琴对EMRI内禀参数估计精度可达到
<math id="M2"><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">6</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483793&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483765&type=
5.41866684
2.53999996
量级,对光度距离的估计精度可达约
<math id="M3"><mn mathvariant="normal">10</mn><mi mathvariant="normal">%</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483848&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483819&type=
5.84200001
2.37066674
,对空间方位的定位精度可达约
<math id="M4"><mn mathvariant="normal">10</mn><mtext> </mtext><mi mathvariant="normal">d</mi><mi mathvariant="normal">e</mi><msup><mrow><mi mathvariant="normal">g</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mtext> </mtext><mi mathvariant="normal">。</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483880&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483855&type=
13.37733269
3.21733332
天琴对EMRI的观测还可以对黑洞四极矩进行限制,限制能力达到
<math id="M5"><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483909&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483887&type=
5.41866684
2.53999996
量级。
Extreme-mass-ratio inspirals are systems consisting of a massive black hole (MBH) and a stellar-origin compact object (CO). It has great scientific significance, such as testing general relativity and exploring the black hole nature. In this paper, we describe the formation picture, the scientific value, and the current research of EMRIs,and through calculating the EMRI rate and parameter estimation, we get the detectability of TianQin on EMRIs. We find that TianQin can observe EMRIs up to redshift
<math id="M6"><mi>z</mi><mo>∼</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483949&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483934&type=
6.77333355
2.62466669
. We also find that EMRI detections could reach tens or hundreds per year in the most optimistic astrophysical scenarios. Intrinsic parameters are expected to be recovered to within fractional errors of
<math id="M7"><mo>∼</mo><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">6</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483993&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49483967&type=
9.31333351
2.96333337
, while typical errors on the luminosity distance and sky localization are 10% and 10
<math id="M8"><mtext> </mtext><mi mathvariant="normal">d</mi><mi mathvariant="normal">e</mi><msup><mrow><mi mathvariant="normal">g</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>
</mo><mtext> </mtext></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49484007&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49484001&type=
9.56733322
3.72533321
respectively. EMRIs can also be used to constrain possible deviations from the Kerr quadrupole moment to within fractional errors
<math id="M9"><mo>∼</mo><msup><mrow><mn mathvariant="normal">10</mn></mrow><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49484036&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49484040&type=
9.31333351
2.96333337
.
极端质量比旋近天琴无毛定理
extreme-mass-ratio inspiralsTianQinno-hair theorem
GEBHARD T, RICH R M, HO L C. A 20 thousand solar mass black hole in the stellar cluster G1 [J]. The Astrophysical Journal Letters, 2002, 578: L41-L46.
FERRARESE L, POGGE R W, PETERSON B M, et al. Supermassive black holes in active galactic nuclei. I. The consistency of black hole masses in quiescent and active galaxies [J]. The Astrophysical Journal Letters, 2001, 555: L79.
GENZEL R, EISENHAUER F, GILLESSEN S. The galactic center massive black hole and nuclear star cluster [J]. Reviews of Modern Physics , 2010, 82: 3121.
KORMENDY J, HO L C. Coevolution (or not) of supermassive black holes and host galaxies [J]. Annual Review of Astronomy and Astrophysics, 2013, 51: 511-653.
EISENHAUER F, GENZEL R, ALEXANDER T, et al. SINFONI in the galactic center: young stars and infrared flares in the central light-month [J]. The Astrophysical Journal, 2005, 628:246-259.
DO T, HEES A, GHEZ A, et al. Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole [J]. Science, 2019,365:664-668.
MIYOSHI M, MORAN J, HERRNSTEIN J, et al. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 [J]. Nature, 1995, 373: 127.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole [J]. The Astrophysical Journal Letters, 2019, 875: L1.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. II. Array and instrumentation [J]. The Astrophysical Journal Letters, 2019, 875: L2.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. III. Data processing and calibration [J]. The Astrophysical Journal Letters, 2019, 875: L3.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. IV. Imaging the central supermassive black hole [J]. The Astrophysical Journal Letters, 2019, 875: L4.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. V. Physical origin of the asymmetric ring [J]. The Astrophysical Journal Letters, 2019, 875: L5.
AKIYAMA K, ALBERDI A, ALEF W, et al. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole [J]. The Astrophysical Journal Letters, 2019, 875: L6.
MERRITT D. Dynamics and evolution of galactic nuclei [M]. Princeton: Princeton University Press, 2013.
MURPHY B W. The formation of stellar cusps in galactic nuclei [J]. Astronomical Society of the Pacific Conference Series, 2011, 439: 189.
FRANK J, REES M J. Effects of massive black holes on dense stellar systems [J]. Monthly Notices of the Royal Astronomical Society, 1976, 176: 633-647.
CARTER B, LUMINET J P. Tidal compression of a star by a large black hole. I Mechanical evolution and nuclear energy release by proton capture [J]. Astronomy and Astrophysics, 1983, 121: 97-113.
KOMOSSA S. Tidal disruption of stars by supermassive black holes: Status of observations [J]. Journal of High Energy Astrophysics, 2015, 7: 148-157.
AMARO P, GAIR J R, FREITAG M, et al. Intermediate and extreme mass-ratio inspirals - Astrophysics, science applications and detection using LISA [J]. Classical and Quantum Gravity, 2007, 24: R113-R169.
HANNUKSELA O A, NG K C Y, LI T G F. Extreme dark matter tests with extreme mass ratio inspirals [J]. Physical Review D, 2020, 102: 103022.
SCHUTZ B F. Determining the Hubble constant from gravitational wave observations [J]. Nature, 2013, 323: 310.
FREEDMAN W L. Cosmology at at crossroads: Tension with the Hubble constant [J]. Nature Astronomy, 2017, 1:0169.
MACLEOD C L, HOGAN C J. Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information [J]. Physical Review D, 2008, 77: 043512.
WANG Y Y, WANG F Y, ZOU Y C, et al. A bright electromagnetic counterpart to extreme mass ratio inspirals [J]. The Astrophysical Journal Letters, 2019, 886: L22.
GEZARI S, CHORNOCK R, REST A, et al. An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core [J]. Nature, 2012, 485: 217-220.
CHEN X, AMARO P. A rapidly evolving region in the galactic center: why S-stars thermalize and more massive stars are missing [J]. The Astrophysical Journal Letters, 2014, 786: L14.
AMARO P. X-MRIs: extremely large mass-ratio inspirals [J]. Physical Review D, 2019, 99: 123025.
RYAN F D. Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments [J]. Physical Review D, 1995, 52: 5707.
RYAN F D. Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral [J]. Physical Review D, 1997, 56: 1845.
RYAN F D. Scalar waves produced by a scalar charge orbiting a massive body with arbitrary multipole moments [J]. Physical Review D, 1997, 56: 7732.
BARACK L, CUTLER C. Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes [J]. Physical Review D, 2007, 75: 042003.
BERTI E, BUONANNO A, WILL C M. Testing general relativity and probing the merger history of massive black holes with LISA [J]. Classical and Quantum Gravity, 2005, 22: S943-S954.
YAGI K, TANAKA T. Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA [J]. Physical Review D, 2010, 81: 064008.
YUNES N, PANI P, CARDOSO V. Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories [J]. Physical Review D, 2012, 85:102003.
YAGI K. New constraint on scalar gauss-bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass X-ray binary [J]. Physical Review D, 2012, 86: 081504.
BERRY C P L, GAIR J R. Linearized f(R) gravity: gravitational radiation & solar system tests [J]. Physical Review D, 2011, 83:104022.
YUNES N, KOCSIS B, LOEB A, et al. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals [J]. Physical Review Letters, 2011, 107:171103.
BARAUSSE E, REZZOLLA L, PETROFF D, et al. Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes [J]. Physical Review D, 2007, 75: 064026.
GAIR J R, VALLISNERI M, LARSON S L, et al. Testing general relativity with low-frequency, space-based gravitational-wave detectors [J]. Living Reviews in Relativity, 2013, 16: 7.
PIOVANO G A, MASELLI A, PANI P. Model independent tests of the Kerr bound with extreme mass ratio inspirals [J]. Physics Letters B, 2020, 811: 135860.
GLAMPEDAKIS K, BABAK S. Mapping spacetimes with LISA: inspiral of a test-body in a `quasi-Kerr' field [J]. Classical and Quantum Gravity, 2005, 23: 4167-4188.
NIU R, ZHANG X, LIU T, et al. Constraining screened modified gravity by space-borne gravitational-wave detectors [J]. The Astrophysical Journal, 2020, 890:163.
HILS D, BENDER P L. Gradual approach to coalescence for compact stars orbiting massive black holes [J]. The Astrophysical Journal, 1995, 445: L7-L10.
SIGURDSSON S, REES M. Capture of stellar--mass compact objects by massive black holes in galactic cusps [J]. Monthly Notices of the Royal Astronomical Society, 1997, 284: 318-326.
IVANOV P B. On formation rate of close binaries consisting of a super-massive black hole and a white dwarf [J]. Monthly Notices of the Royal Astronomical Society, 2002, 336: 373-381.
HUGHES S A. Evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms [J]. Physical Review D, 2001, 64:064004.
BARACK L, CUTLER C. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy [J]. Physical Review D, 2004, 69: 082005.
DRASCO S, HUGHES S A. Gravitational wave snapshots of generic extreme mass ratio inspirals [J]. Physical Review D, 2006, 73: 024027.
YUNES N, BUONANNO A, HUGHES S A, et al. Modeling extreme mass ratio inspirals within the effective-one-body approach [J]. Physical Review Letters, 2010, 104: 091102.
HAN W B. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits [J]. Classical and Quantum Gravity, 2016, 33: 065009.
PAN Y, BUONANNO A, CHEN Y B, et al. A physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries [J]. Physical Review D, 2004, 69: 104017.
GAIR J, WEN L Q. Detecting extreme mass ratio inspirals with LISA using time-frequency methods II: search characterization [J]. Classical and Quantum Gravity, 2005, 22: S1359-S1371.
WEN L Q, GAIR J R. Detecting extreme mass ratio inspirals with LISA using time-frequency methods [J]. Classical and Quantum Gravity, 2005, 22: S445-S452.
WEN L Q, CHEN Y B, GAIR J R. Extracting information about EMRIs using time-frequency methods [J]. AIP Conference Proceeding, 2006, 873: 595-604.
CORNISH N J. Detection strategies for extreme mass ratio inspirals [J]. Classical and Quantum Gravity, 2011, 28: 094016.
BABAK S, GAIR J R, SESANA A, et al. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals [J]. Physical Review D, 2017, 95: 103012.
SHANKAR F, WEINBERG D H, MIRALDA J. Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency [J]. The Astrophysical Journal, 2009, 690: 20-41.
SHANKAR F. Black hole demography: from scaling relations to models [J]. Classical and Quantum Gravity, 2013, 30: 244001.
GAIR J R, TANG C, VOLONTERI M. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function [J]. Physical Review D, 2010, 81: 104014.
FERRARESE L, MERRITT D. A fundamental relation between supermassive black holes and their host galaxies [J]. The Astrophysical Journal Letters, 2000, 539: L9.
GEBHARDT K, BENDER R, BOWER G, et al. A relationship between nuclear black hole mass and galaxy velocity dispersion [J]. The Astrophysical Journal Letters, 2000, 539: L13.
BAHCALL J N, WOLF R A. Star distribution around a massive black hole in a globular cluster [J]. The Astrophysical Journal, 1976, 209: 214-232.
PRETO M, AMARO P . On strong mass segregation around a massive black hole: Implications for lower-frequency gravitational-wave astrophysics [J]. The Astrophysical Journal Letters, 2010, 708: L42.
AMARO P, PRETO M. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth [J]. Classical Quantum Gravity, 2011, 28: 094017.
BERRY C, COLE R H, CANIZARES P, et al. Importance of transient resonances in extreme-mass-ratio inspirals [J]. Physical Review D, 2016, 94:124042.
BABAK S, FANG H, GAIR J R, et al. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole [J]. Physical Review D, 2006, 75: 024005.
CHUA A, KORSAKOVA N, MOORE C J, et al. 2 Fast 2 fiducial: Gaussian processes for the interpolation and marginalization of waveform error in extreme-mass-ratio-inspiral parameter estimation [J]. Physical Review D, 2020, 101: 044027.
CHUA A, GAIR J R. Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis [J]. Classical Quantum Gravity, 2015, 32: 232002.
CHUA A. Augmented kludge waveforms and Gaussian process regression for EMRI data analysis [J]. Journal of Physics: Conference Series, 2016, 716: 012028.
CHUA A, MOORE C J, GAIR J R. The fast and the fiducial: Augmented kludge waveforms for detecting extreme-mass-ratio inspirals [J]. Physical Review D, 2017, 96: 044005.
YUNES N, BUONANNO A, HUGHES S A, et al. Modeling extreme mass ratio inspirals within the effective-one-body approach [J]. Physical Review Letters, 2010, 104: 91102.
GAIR J R, MANDEL I, WEN L Q. Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data [J]. Journal of Physics: Conference Series, 2008, 122: 012037.
GAIR J R, MANDEL I, WEN L Q. Improved time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data [J]. Classical Quantum Gravity, 2008, 25: 184031.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构