1.西南大学物理科学与技术学院,重庆 400715
2.华中科技大学物理学院,湖北 武汉 430074
郜青(1987年生),女;研究方向:引力理论、宇宙学;E-mail: gaoqing1024@swu.edu.cn
龚云贵(1973年生),男;研究方向:引力理论、宇宙学;E-mail: yggong@hust.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-14,
收稿日期:2020-10-30,
录用日期:2020-11-22
扫 描 看 全 文
郜青,龚云贵,龙江.引力波及引力理论检验[J].中山大学学报(自然科学版),2021,60(01):86-98.
GAO Qing,GONG Yungui,LONG Jiang.Test of gravity with gravitational waves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):86-98.
郜青,龚云贵,龙江.引力波及引力理论检验[J].中山大学学报(自然科学版),2021,60(01):86-98. DOI: 10.13471/j.cnki.acta.snus.2020.10.30.2020B110.
GAO Qing,GONG Yungui,LONG Jiang.Test of gravity with gravitational waves[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):86-98. DOI: 10.13471/j.cnki.acta.snus.2020.10.30.2020B110.
爱因斯坦广义相对论预言时空涟漪以引力波的形式向外传播,它的传播速度是光速,具有两个偏振态。超越爱因斯坦广义相对论的修改引力理论则预言引力波可能存在纵模及多至六个偏振模式,引力波的传播速度不是光速,引力子可能具有质量,且引力波也可能存在偶极辐射。本文介绍了引力波的性质,以及怎样通过引力波的探测来可能检验引力理论。
Gravitational waves (GWs) in Einstein’s general relativity propagate with the speed of light, and they have two polarizations. In modified gravitational theories beyond general relativity, GWs may have up to six polarizations, the speed of propagation may not be the speed of light, graviton may be massive and there may exist dipole radiation. In this paper, we discuss the properties of GWs and how to use the measurement of GWs to test theories of gravity.
引力波引力理论
gravitational wavesgravitational theory
HULSE R A, TAYLOR J H. Discovery of a pulsar in a binary system [J]. Astrophysical Journal, 1975, 195:L51-L53.
BURDGE K B, COUGHLIN M W, FULLER J, et al. General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system [J]. Nature, 2019, 571:528-531.
GERTSENSHTEIN M E, PUSTOVOIT V I. On the detection of low frequency gravitational waves [J]. Soviet Physics JETP, 1962, 16:433-435.
HARRY G M. Advanced LIGO: the next generation of gravitational wave detectors [J]. Classical and Quantum Gravity, 2010, 27:084006.
AASI J, ABBOTT B P, ABBOTT R, et al(LIGO Scientific). Advanced LIGO [J]. Classical and Quantum Gravity, 2015, 32:074001.
ABBOTT B P, ABBOTT R,ABBOTT T D, et al(LIGO Scientific Collaboration and Virgo Collaboration). Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters, 2016, 116:061102.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al(LIGO Scientific Collaboration and Virgo Collaboration). GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and VIRGO during the first and second observing runs [J]. Physical Review X, 2019, 9:031040.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al (LIGO Scientific Collaboration and Virgo Collaboration). GWTC-2: compact binary coalescences observed by LIGO and VIRGO during the first half of the third observing run[EB/0L]. https://arxiv.org/abs/2010.14527https://arxiv.org/abs/2010.14527.
PETERS P C, MATHEWS J. Gravitational radiation from point masses in a Keplerian orbit [J]. Physical Review, 1963, 131(1):435-440.
EPSTEIN R, WAGONER R V. Post-Newtonian generation of gravitational waves [J]. The Astrophyical Journal, 1975, 197:717-723.
郜青,龚云贵,梁迪聪. 引力波偏振[J]. 科学通报,2018, 63(9):801-815.
GAO Q, GONG Y G, LIANG D C. The polarizations of gravitational waves [J]. Chinese Science Bulletin, 2018, 63(9):801-815.
FLANAGAN E E, HUGHES S A. The basics of gravitational wave theory [J]. New Journal of Physics, 2005, 7:204.
NEWMAN E, PENROSE R. An approach to gravitational radiation by a method of spin coefficients [J]. Journal of Mathematical Physics, 1962, 3(3):566-578.
EARDLEY D M, LEE D L, LIGHTMAN A P. Gravitational-Wave observations as a tool for testing relativistic gravity [J]. Physical Review D, 1973, 8(10):3308-3321.
LIANG D, GONG Y, HOU S, et al. Polarizations of gravitational waves in f(R)gravity [J]. Physical Review D, 2017, 95:104034.
HOU S, GONG Y, LIU Y. Polarizations of gravitational waves in Horndeski theory [J]. The European Physical Journal C, 2018, 78:378.
GONG Y, HOU S, LIANG D, et al. Gravitational waves in Einstein-aether and generalized TeVeS theory after GW170817 [J]. Physical Review D, 2018, 97:084040.
GONG Y, HOU S, PAPANTONOPOULOS E, et al. Gravitational waves and the polarizations in Hořava gravity after GW170817 [J]. Physical Review D, 2018, 98:104017.
CORNISH N J, LARSON S L. Space missions to detect the cosmic gravitational-wave background [J]. Classical and Quantum Gravity, 2001, 18:3473-3495.
ESTABROOK F B, WAHLQUIST H D. Response of doppler spacecraft tracking to gravitational radiation [J]. General Relativity and Gravitation, 1975, 6:439-447.
LIANG D, GONG Y, WEINSTEIN A J, et al. Frequency response of space-based interferometric gravitational-wave detectors [J]. Physical Review D, 2019, 99:104027.
ZHANG C, GAO Q, GONG Y, et al. Full analytical formulas for frequency response of space-based gravitational wave detectors [J]. Physical Review D, 2020,101:124027.
TINTO M, ARMSTRONG J W. Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation [J]. Physical Review D, 1999, 59:102003.
ARMSTRONG J W, ESTABROOK F B, TINTO M. Time-Delay Interferometry for space-based gravitational wave searches [J]. The Astrophysical Journal, 1999, 527(2):814-826.
ZHANG C, GAO Q, GONG Y, et al. Frequency response of time-delay interferometry for space-based gravitational wave antenna [J]. Physical Review D, 2019, 100:064033.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al (LIGO Scientific Collaboration and Virgo Collaboration). First search for nontensorial gravitational waves from known pulsars [J]. Physical Review Letters, 2018, 120:031104.
ABBOTT B P, ABBOTT R,ABBOTT T D, et al (LIGO Scientific Collaboration and Virgo Collaboration). Search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background [J]. Physical Review Letters, 2018, 120:201102.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al (LIGO Scientific Collaboration and Virgo Collaboration). Tests of general relativity with GW170817 [J]. Physical Review Letters, 2019, 123:011102.
DANZMANN K. LISA - an ESA cornerstone mission for a gravitational wave observatory[J]. Classical and Quantum Gravity, 1997, 14(6):1399-1404.
LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector [J]. Classical and Quantum Gravity, 2016, 33(3):035010.
ABBOTT B P, ABBOTT R,ABBOTT T D, et al (LIGO Scientific Collaboration and Virgo Collaboration). Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A [J]. The Astrophysical Journal Letters, 2017, 848(2):L13.
ABBOTT B P, ABBOTT R,ABBOTT T D,et al (LIGO Scientific Collaboration and Virgo Collaboration). Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1 [J]. Physical Review D, 2019, 100:104036.
ABBOTT R, ABBOTT T D, ABRAHAM S, et al (LIGO Scientific Collaboration and Virgo Collaboration). Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog [EB/OL]. https://arxiv.org/abs/2010.14529https://arxiv.org/abs/2010.14529.
MIRSHEKARI S, YUNES N, WILL C M. Constraining Lorentz-violating, modified dispersion relations with gravitational waves [J]. Physical Review D, 2012, 85:024041.
DETWEILER S L. Black holes and gravitational waves.Ⅲ-The resonant frequencies of rotating holes [J]. The Astrophysical Journal, 1980, 239:292-295.
DREYER O, KELLY B J, KRISHNAN B, et al. Black-hole spectroscopy: testing general relativity through gravitational-wave observations [J]. Classical and Quantum Gravity, 2004, 21(4):787-803.
BERTI E, CARDOSO V, WILL C M. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA [J].Physical Review D, 2006, 73:064030.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构