天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
段会宗 (1988年生),男; 研究方向:精密测量物理;E-mail: duanhz3@mail.sysu.edu.cn
叶贤基 (1965 年生),男; 研究方向:精密测量物理;E-mail: yexianji@mail.sysu.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-19,
收稿日期:2020-10-30,
录用日期:2020-11-11
扫 描 看 全 文
段会宗,骆颖欣,张静怡等.星间激光干涉测量技术[J].中山大学学报(自然科学版),2021,60(01):162-177.
DUAN Huizong,LUO Yingxin,ZHANG Jingyi,et al.Inter-satellite laser interferometry[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):162-177.
段会宗,骆颖欣,张静怡等.星间激光干涉测量技术[J].中山大学学报(自然科学版),2021,60(01):162-177. DOI: 10.13471/j.cnki.acta.snus.2020.10.30.2020B107.
DUAN Huizong,LUO Yingxin,ZHANG Jingyi,et al.Inter-satellite laser interferometry[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):162-177. DOI: 10.13471/j.cnki.acta.snus.2020.10.30.2020B107.
近年来迅速发展的空间引力波探测、卫星重力测量、深空探测等空间任务需求,对超远距离、超高精度星间激光干涉测量技术提出了极具挑战性的技术要求。在典型的空间引力波探测中,要求在百万千米(10
9
m)距离上达到皮米(10
-12
m)量级的激光干涉测量精度。本文根据空间任务中对星间激光干涉测量的需求,介绍了星间激光干涉测量系统的总体构成,并讨论了测量系统中的各项关键技术:空间应用型激光器技术、超稳光学平台、稳频技术、精密相位测量与超低功率弱光锁相技术、星间激光快速捕获、跟踪与超精密光束指向测控技术等,以及目前的技术发展现状。星间激光干涉测量技术能力的提高,将能够满足更广泛的空间任务需求并大幅推进空间任务的进一步发展。
In recent years, a large number of space missions such as space gravitational wave detection, satellite gravity measurement, deep space exploration and other space missions have put forward extremely challenging technical requirements for ultra-long distance and ultra-high precision inter satellite laser interferometry technology. For example, in typical space gravitational wave detection, it is required to reach the accuracy of Pico-meter(10
-12
m) at a distance of one million kilometers (10
9
m). According to the typical requirements of intersatellite laser interferometry in space missions, this paper introduces the overall structure of intersatellite laser interferometry system, discusses and discusses the key technologies in the measurement system, such as space applied laser technology, frequency stabilization technology, precise phase measurement and ultra-low power weak light phase locking technology, fast acquisition, tracking and ultra-precision beam pointing of inter satellite laser Measurement and control technology, as well as the current technology development status. The improvement of intersatellite laser interferometry technology will be able to meet the needs of a wider range of space missions and greatly promote the further development of space missions.
激光干涉星间激光测距星载激光引力波探测空间任务
laser interferometryintersatellite laser rangingspaceborne lasergravitational wave detectionspace mission
LIGO 2020 [EB/OL].www.ligo.caltech.edu/www.ligo.caltech.edu/.
LISA 2020 [EB/OL].www.lisamission.org/www.lisamission.org/.
NI W T. ASTROD-GW: overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1):1341004.
LUN J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3):035010.
HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017,4(5):685–686.
KAWAMURA S, ANDO M, NAKAMURA T, et al. The Japanese space gravitational wave antenna-DECIGO[J]. Journal of Physics: Conference Series, 2008,122:012006.
ROBERTS M, TAYLOR P, GILL P. Laser linewidth at the sub-hertz level [R]. National Physics Laboratory,1999.
SULLIVAN D B, ALLAN D W, HOWE D A, et al. Characterization of clocks and oscillators[M]. Technical Note: National Institute of Standards and Technology,1990.
DANZMANN K, RUDIGER A. LISA technology - concept, status, prospects[J]. Classical & Quantum Gravity, 2003, 20(10): S1-S9(9).
DANZMANN K, PRINCE T. LISA assessment study report(Yellow Book) ESA/SRE(2011)3[EB /OL]. URL: http://sci.esa.int/sciencee/www/object/index.cfm?fobobjectid=48364.
SHEARD B S, GRAY M B, MCCLELLAND D E, et al. Laser frequency stabilization by locking to a LISA arm[J]. Physics Letters A, 2003,320(1):9-21.
SHADDOCK D A, WARE B, SPERO R E, et al. Postprocessed time-delay interferometry for LISA[J]. Physical Review D: Particles and Fields, 2004,70(8):357-363.
KANE T J, BYER R L. Monolithic, unidirectional single-mode Nd: YAG ring laser[J]. Optics Letters, 1985,10(2):65-67.
HILDEBRAND U, LANGE R , SMUTNY B. 2006 Fiber-optic components for the laser communication terminal on TerraSAR-X [EB/OL].https://photonics.gsfc.nasa.gov/https://photonics.gsfc.nasa.gov/.
MUEHLNIKEL G, KAMPFNER H, HEINE F, et al. The Alphasat GEO laser communication terminal flight acceptance tests[C]// Proc International Conference on Space Optical Systems and Applications (ICSOS).Ajaccio, Corsica, France, 2012.
ARMANO M, AUDLEY H, AUGER G, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016,116(23): 231101(10).
ABICH K, BRAXMAIER C, GOHLKE M, et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 2019,123:031101.
FREITAG I, TUNNERMANN A, WELLING H. Power scaling of diode-pumped monolithic Nd: YAG lasers to output powers of several watts[J]. Optics Communications, 1995,115:511-515.
TROBS M. Laser development and stabilization for the spaceborne interferometric gravitational wave detector LISA[D]. Hannover: University at Hannover,2005.
TROBS M, D’ARCIO L, HEINZEL G, et al. Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA[J]. Journal of the Optical Society of America B, 2009,26(5):1137-1140.
NUMATA K, CHEN J R, CAMP J. Fiber laser development for LISA[J]. Journal of Physics Conference Series, 2010,228(1):012043.
NUMATA K, CAMP J. Experimental performance of a single-mode ytterbium-doped fiber ring laser with intracavity modulator[J]. Laser Physics Letters, 2012,9(8):575-580.
NUMATA K, CAMP J, KRAINAK M A, et al. Performance of planar-waveguide external cavity laser for precision measurements[J]. Optics Express, 2010,18(22):22781-22788.
NUMATA K, CAMP J. Precision laser development for interferometric space missions NGO, SGO, and GRACE follow-on [J]. Journal of Physics Conference Series, 2012,363(1):012054.
CAMP J, NUMATA K, KRAINA M. Progress and plans for a US laser system for LISA[J]. Journal of Physics Conference Series, 2017,840(1): 012013.
SCHWANDER T, HEINE F, LANGE R, et al. New 808 nm high power laser diode pump module for space applications[C]// International Conference on Space Optics 2006, 2017.
TRAUB M, PLUM H D, HOFFMANN H D, et al. Spaceborne fiber coupled diode laser pump modules for intersatellite communications[J]. Proc Spie, 2007,6736: 673618.
DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97–105.
BLACK E D. An introduction to Pound–Drever–Hall laser frequency stabilization[J]. American Journal of Physics, 2000,69(1): 79–87.
PIERCE R, KLIPSTEIN W M, SHADDOCK D, et al. Stabilized lasers for space applications: a high TRL optical cavity reference system[C]//Quantum Electronics and Laser Science Conference. Optical Society of America, 2012: JW3C. 3.
NICKLAUS K, HERDING M, WANG X, et al. High stability laser for next generation gravity missions[C]// International Conference on Space Optics 2014, 2017,10563:105632T.
DORINGSHOFF K, SCHULDT T, KOVALCHUK E V, et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics, 2017, B123(6):183(8).
LEIBRANDT D R, BERGQUIST J C, ROSENBAND T. Cavity-stabilized laser with acceleration sensitivity below 10-12 g-1[J]. Physical Review A, 2013, 87(2):691-697.
LEIBRANDT D R, THORPE M J, NOTCUTT M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011,19(4):3471-3482.
DIDIER A, MILLO J, MARECHAL B, et al. Ultracompact reference ultralow expansion glass cavity[J]. Applied Optics, 2018,57(22):6470-6473.
SWIERAD D, HAFNER S, VOGT S, et al. Ultra-stable clock laser system development towards space applications[J]. Scientific Reports, 2016,6:33973.
CHEN Q F, NEVSKY A, CARDACE M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10-15 [J]. Review of Scientific Instruments, 2014,85(11):113107.
WEBSTER S, GILL P. Force-insensitive optical cavity[J]. Optics Letters, 2011,36(18):3572-3574.
LUO Y X, LIH Y, LIANG Y R, et al. A preliminary prototype of laser frequency stabilization for spaceborne interferometry missions[C]//2016 European Frequency and Time Forum (EFTF). IEEE, 2016: 1-4.
MING M, LUO Y X, LIANG Y R, et al. Ultraprecision intersatellite laser interferometry[J]. International Journal of Extreme Manufacturing, 2020,2(2): 022003.
ELLIFFE E J, BOGENSTAHL J, DESHPANDE A, et al. Hydroxide-catalysis bonding for stable optical systems for space[J]. Classical and Quantum Gravity, 2005,22(10):S257-S267.
LUO Y X, LI H Y, YEH H C. Note: digital laser frequency auto-locking for inter-satellite laser ranging[J]. Review of Scientific Instruments, 2016,87(5): S1-2.
ARIE A, SCHILLER S, GUSTAFSON E K, et al. Absolute frequency stabilization of diode-laser-pumped Nd: YAG lasers to hyperfine transitions in molecular iodine[J]. Optics Letters, 1992,17(17):1204-1206.
SUEMASA A, SHIMO-OKU A, NAKAGAWA K, et al. Developments of highly frequency and intensity stabilized lasers for space gravitational wave detector decigo/pre-decigo[C]// 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017.
ACEF O, CLAIRON A, BURCK F D, et al. Nd: YAG laser frequency stabilized for space applications[C]// International Conference on Space Optics 2010, 2019.
ZANG E J, CAO J P, LI Y, et al. Realization of four-pass I2 absorption cell in 532-nm optical frequency standard[J]. IEEE Transactions on Instrumentation & Measurement, 2007, 56(2):673-676.
GOHLKE M, SCHULDT T, DORINGSHOFF K, et al. Adhesive bonding for optical metrology systems in space applications[J]. Journal of Physics Conference, 2015,610:012039.
SCHKOLNIK V, DORINGSHOFF K, GUTSCH F, et al. JOKARUS-design of a compact optical iodine frequency reference for a sounding rocket mission[J]. EPJ Quantum Technology, 2017,4(1):9.
LUN J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical & Quantum Gravity, 2020,37 (18):185013.
JENNRICH O, STEBBINS R T, BENDER P L, et al. Demonstration of the LISA phase measurement principle[J]. Classical & Quantum Gravity, 2001, 18(19): 4159-4164.
POLLACK S E, JENNRICH O, STEBBINS R T, et al. Status of LISA phase measurement work in the US[J]. Classical & Quantum Gravity, 2003,20(10):S193-S199.
POLLACK S E, STEBBINS R T. Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer[J]. Classical & Quantum Gravity, 2006, 23(12):4189-4200.
WARE B, FOLKNER W M, SHADDOCK D, et al. Phase measurement system for inter-spacecraft laser metrology[C]//Proceedings of the 2006 Earth Science Technology Conference, 2006.
HSU M T L, LITTLER I C M, SHADDOCK D A, et al. Sub-picometer length measurement using heterodyne laser interferometry and all-digital rf phase meters[J]. Optics Letters, 2010, 35(24): 4202-4204.
de VINE G, RABELING D S, SLAGMOLEN B J J, et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry[J]. Optics Express, 2009,17(2):828-837.
WAND V, GUZMAN F, HEINZEL G, et al. LISA phasemeter development[C]//AIP Conference Proceedings. American Institute of Physics, 2006, 873: 689-696.
BYKOV I, DELGADO J J E, MARIN A F G, et al. LISA phasemeter development: Advanced prototyping[C]//Journal of Physics: Conference Series. IOP Publishing, 2009, 154(1): 012017.
GERBERDING O, SHEARD B, BYKOV I, et al. Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments[J]. Classical and Quantum Gravity, 2013, 30(23): 235029.
SCHWARZE T S, GERBERDING O, CERVANTES F G, et al. Advanced phasemeter for deep phase modulation interferometry[J]. Optics Express, 2014, 22(15): 18214-18223.
GERBERDING O, DIEKMANN C, KULLMANN J, et al. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision[J]. Review of Scientific Instruments, 2015, 86(7): 074501.
SCHWARZE T S, BARRANCO G F, PENKERT D, et al. Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision[J]. Physical Review Letters, 2019, 122(8): 081104.
BURNETT C M. Development of an Ultra-precise digital phasemeter for the LISA gravitational wave detector[D]. Sweden: Lulea University of Technology,2011.
LIANG Y R, DUAN H Z, YEH H C, et al. Fundamental limits on the digital phase measurement method based on cross-correlation analysis[J]. Review of Scientific Instruments, 2012, 83(9): 095110.
LIANG Y R, DUAN H Z, XIAO X L, et al. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop[J]. Review of Scientific Instruments, 2015, 86(1): 016106.
LIANG Y R. Note: a new method for directly reducing the sampling jitter noise of the digital phasemeter[J]. Review of Scientific Instruments, 2018, 89(3): 036106.
LIU H S, DONG Y H, LI Y Q, et al. The evaluation of phasemeter prototype performance for the space gravitational waves detection[J]. Review of Scientific Instruments, 2014, 85(2): 024503.
LIU H, LUO Z, IN G. The development of phasemeter for Taiji space gravitational wave detection[J]. Microgravity Science and Technology, 2018, 30(6): 775-781.
McNAMARA P W. Weak-light phase locking for LISA[J]. Classical and Quantum Gravity, 2005, 22(10): S243.
DANZMANN K. LISA—Laser Interferometer space antenna: A proposal in response to the esa call for l3 mission concepts[R]. Hanover: Leibniz University, 2017.
DIEKMANN C, STEIER F, SHEARD B, et al. Analog phase lock between two lasers at LISA power levels[C]//Journal of Physics: Conference Series. IOP Publishing, 2009,154(1):012020.
Enclycopedia Photonics 2020 [EB/OL].www.rp-photonics.com/beam_divergence.htmlwww.rp-photonics.com/beam_divergence.html.
BENDER P. LISA: a cornerstone mission for the observation of gravitational waves[J]. System and Technology Study Report ESA-SCI, 2000, 11: 2000.
ENLOE L H, RODDA J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 1965, 53(2):165-166.
RAMOS R T, SEEDS A J. Delay, linewidth and bandwidth limitations in optical phase-locked loop design[J]. Electronics Letters, 1990, 26(6): 389-391.
WIN M Z, CHEN C C , SCHOLTZ R A. Optical phase-locked loop for free-space laser communications with heterodyne detection[C]// Optics, Electro-optics, & Laser Applications in Science & Engineering. International Society for Optics and Photonics, 1991,1417:42-52.
SANTARELLI G, CLAIRON A, LEA S N, et al. Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz[J]. Optics Communications, 1994,104(4/5/6):339-344.
Le GOUET J, KIM J, BOURASSIN-BOUCHET C, et al. Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator[J]. Optics Communications, 2009,282(5):977-980.
XU Z X, ZHANG X, HUANG K K, et al. Digital optical phase-locked loop for diode lasers based on field programmable gate array[J]. Review of Scientific Instruments, 2012,83(9):181.
LIAO A C, NI W T, SHY J T. Pico-watt and femto-watt weak-light phase locking[J]. International Journal of Modern Physics D, 2002,11(07):1075-1085.
YE J, HALL J L. Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements[J]. Optics Letters, 1999,24(24):1838-1840.
McNAMARA P W, WARD H, HOUGH J. Laser phase-locking techniques for LISA: experimental status[C]//AIP Conference Proceedings. American Institute of Physics, 1998, 456(1): 143-147.
DICK G J, TU M R, STREKALOV D, et al. Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder[J]. IPN Progress Report, 2008,42:1-17.
FRANCIS S P, LAM T T Y, MCKENZIE K, et al. Weak-light phase tracking with a low cycle slip rate[J]. Optics Letters, 2014,39(18):5251-5254.
VITERBI A J. Phase-Locked-Loop behavior in the presence of noise[J]. Principles of Coherent Communication, 1966(1): 77-120.
NIELSEN T T, OPPENHAEUSER G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4. SILEX[J]. Proc SPIE, 2002,4635:1-15.
JONO K, TAKAYAMA Y, KURA N, et al. OICETS on-orbit laser communication experiments[C]// Free-Space Laser Communication Technologies XVIII. International Society for Optics and Photonics, 2006, 6105:610503.
SHEARD B S, HEINZEL G, DANZMANN K, et al. Intersatellite laser ranging instrument for the GRACE follow-on mission[J]. Journal of Geodesy, 2012, 86(12):1083-1095.
YEH H C, YAN Q Z, LIANG Y R, et al. Intersatellite laser ranging with homodyne optical phase locking for space advanced gravity measurements mission[J]. Review of Scientific Instruments, 2011, 82(4):1100.
HEINZEL G, WAND V, GARCIA A, et al. The LTP interferometer and phasemeter[J]. Classical & Quantum Gravity, 2004, 21(5):S581-S587.
CIRLLO F, GATH P F. Control system design for the constellation acquisition phase of the LISA mission[C]//Journal of Physics: Conference Series. IOP Publishing, 2009, 154(1): 012014.
WUCHENICH D M R, MAHRDT C, SHEARD B S, et al. Laser link acquisition demonstration for the GRACE Follow-On mission[J]. Optics Express, 2014,22(9):11351-11366.
LUO Z R, WANG Q L, MAHRDT C, et al. Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission[J]. Applied Optics, 2017,56(5):1495-1500.
ZHANG J Y, MING M, JIANG Y Z, et al. Inter-satellite laser link acquisition with dual-way scanning for space advanced gravity measurements mission[J]. Review of Scientific Instruments, 2018,89(6):064501.
MANOJLOVIC L M. Quadrant photodetector sensitivity[J]. Applied Optics, 2011,50(20):3461-3469.
0
浏览量
2
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构