1.广东金融学院经济与贸易学院,广东 广州 510521
2.中山大学管理学院,广东 广州 510275
王佩(1989年生),女;研究方向:动态资产配置与养老金融等;E-mail:wangpei89@gduf.edu.cn
张玲(1979年生),女;研究方向:资产配置、风险管理、养老金融等;E-mail:zhangl99@gduf.edu.cn
纸质出版日期:2021-05-25,
网络出版日期:2021-01-15,
收稿日期:2020-09-16,
录用日期:2020-11-05
扫 描 看 全 文
王佩,陈峥,张玲.基于衍生品投资的DC型养老金计划均衡投资策略[J].中山大学学报(自然科学版),2021,60(03):147-158.
WANG Pei,CHEN Zheng,ZHANG Ling.Equilibrium investment strategy for a DC pension plan with derivative trading[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):147-158.
王佩,陈峥,张玲.基于衍生品投资的DC型养老金计划均衡投资策略[J].中山大学学报(自然科学版),2021,60(03):147-158. DOI: 10.13471/j.cnki.acta.snus.2020.09.16.2020A054.
WANG Pei,CHEN Zheng,ZHANG Ling.Equilibrium investment strategy for a DC pension plan with derivative trading[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):147-158. DOI: 10.13471/j.cnki.acta.snus.2020.09.16.2020A054.
研究均值-方差准则下可投资衍生品的确定缴费型养老金计划(DC型养老金计划)的均衡投资策略。具体地,DC 型养老金计划的代表性参与者不仅可以投资于一个无风险资产和一支股票,还可以投资一个衍生品,其中股票的价格过程由随机波动率模型描述。在博弈论框架下,利用随机最优控制方法分别得到了有衍生品投资和无衍生品投资情形下的均衡投资策略和相应均衡有效前沿的解析式。最后,数值算例表明随机波动率和风险溢价对均衡有效前沿有显著影响,并发现有衍生品投资情形下的均衡有效前沿总是优于无衍生品投资情形下的均衡有效前沿。
The equilibrium investment strategy for a DC pension plan with derivative trading under the mean-variance criterion is considered. That is to say, a representative member of the DC pension plan is allowed to invest not only in a risk-free asset and a stock, but also in a derivative. The stock price is described by a stochastic volatility model. Within the game theoretic framework, the analytic expressions of the equilibrium investment strategies and the corresponding equilibrium efficient frontiers are obtained in two cases, with and without the derivative asset. Finally, numerical examples show that the stochastic volatility and risk premium have significant impact on the equilibrium efficient frontiers, and the equilibrium efficient frontier of the case with derivative is always better than the equilibrium efficient frontier of the case without derivative.
衍生品确定缴费型养老金计划(DC型养老金计划)均衡投资策略随机波动率
derivativesDC pension planequilibrium investment strategystochastic volatility
POTERBA J, RAUH J, VENTI S, et al. Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth [J]. Journal of Public Economics, 2007, 91: 2062-2086.
BLAKE D, WRIGHT D, ZHANG Y M. Age-dependent investing: optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners [J]. Journal of Economic Dynamics and Control, 2014, 38:105-124.
BATTOCCHIO P, MENONCIN F. Optimal pension management in a stochastic framework [J]. Insurance: Mathematics and Economics, 2004, 34(1): 79-95.
CAIRNS A J, BLAKE D, DOWD K. Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans [J]. Journal of Economic Dynamics and Control, 2006, 30(5): 843-877.
CHEN Z, LI Z F, ZENG Y, et al. Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk [J]. Insurance: Mathematics and Economics, 2017, 75: 137-150.
YAO H, LAI Y, MA Q, et al. Asset allocation for a dc pension fund with stochastic income and mortality risk: A multi-period mean-variance framework [J]. Insurance: Mathematics and Economics, 2014, 54: 84-92.
GUAN G, LIANG Z. Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns [J]. Insurance: Mathematics and Economics, 2015, 61: 99-109.
ZHANG L, ZHANG H, YAO H X. Optimal investment management for a defined contribution pension fund under imperfect information [J]. Insurance: Mathematics and Economics, 2018, 79: 210-224.
FRENCH K R, SCHWERT G W, STAMBAUGH R F. Expected stock returns and volatility [J]. Journal of Financial Economics,1978, 19(1): 3-29.
HOBSON D G, ROGERS L C G. Complete models with stochastic volatility [J]. Mathematical Finance, 1998, 8(1): 27-48.
GAO J W. Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model [J]. Insurance: Mathematics and Economics, 2009, 45(1): 9-18.
GUAN G, LIANG Z. Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework[J]. Insurance: Mathematics and Economics, 2014, 57: 58-66.
邓丽梅, 谷爱玲, 伊博. 一类随机模型下DC养老金的最优投资策略[J].中山大学学报(自然科学版), 2020, 59(5): 19-28.
DENG L M, GU A L, YI B. Optimal investment strategy under a stochastic model for DC pension [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(5): 19-28.
BJÖRK T, MURGOCI A. A general theory of Markovian time inconsistent stochastic control problems [J].Ssrn Electronic Journal, 2010.http://dx.doi.org/10.2139/ssrn.1694759http://dx.doi.org/10.2139/ssrn.1694759
HE L, LIANG Z. Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework [J]. Insurance: Mathematics and Economics, 2013, 53(3): 643-649.
WU H, ZENG Y. Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk [J]. Insurance: Mathematics and Economics, 2015, 64: 396-408.
SUN J, LI Z, ZENG Y. Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model [J]. Insurance: Mathematics and Economics, 2016, 67: 158-172.
ZHANG L, LI D, LAI Y. Equilibrium investment strategy for a defined contribution pension plan under stochastic interest rate and stochastic volatility [J]. Journal of Computational and Applied Mathematics, 2020, 368, 112536.
李方超, 张成科, 朱怀念. Heston模型下考虑工资风险和保费退还条款的DC型养老金时间一致性投资策略[J]. 系统管理学报, 2020, 29(04): 617-628.
LI F C, ZHANG C K, ZHU H N. Time-consistent investment strategy for DC pension with salary risk and premium refund clauses in Henston model [J]. Journal of Systems and Management, 2020, 29(04): 617-628.
LIU J, PAN J. Dynamic derivative strategies [J]. Journal of Financial Economics, 2003, 69(3): 401-430 .
ESCOBAR M, FERRANDO S, RUBTSOV A. Robust portfolio choice with derivative trading under stochastic volatility [J]. Journal of Bank and Finance, 2015, 61: 142-157.
ESCOBAR M, FERRANDO S, RUBTSOV A. Dynamic derivative strategies with stochastic interest rates and model uncertainty [J]. Journal of Economic Dynamics and Control, 2018, 86: 49-71.
ZENG Y, LI D, CHEN Z, et al. Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility [J]. Journal of Economic Dynamics and Control, 2018, 88: 70-103.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构