1.南昌工程学院江西省水信息协同感知与智能处理重点实验室, 江西 南昌330099
2.南昌工程学院信息工程学院, 江西 南昌 330099
王文丰(1983年生),男;研究方向:分布式计算、云存储及智能计算;E-mail:Wangwf@nit.edu.cn
纸质出版日期:2021-11-25,
网络出版日期:2021-01-06,
收稿日期:2020-09-07,
录用日期:2020-12-08
扫 描 看 全 文
王文丰,徐灯,傅晶等.混合分层自主学习量子粒子群优化算法[J].中山大学学报(自然科学版),2021,60(06):161-168.
WANG Wenfeng,XU Deng,FU Jing,et al.Hybrid hierarchical autonomous learning quantum particle swarm optimization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):161-168.
王文丰,徐灯,傅晶等.混合分层自主学习量子粒子群优化算法[J].中山大学学报(自然科学版),2021,60(06):161-168. DOI: 10.13471/j.cnki.acta.snus.2020.09.07.2020A047.
WANG Wenfeng,XU Deng,FU Jing,et al.Hybrid hierarchical autonomous learning quantum particle swarm optimization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):161-168. DOI: 10.13471/j.cnki.acta.snus.2020.09.07.2020A047.
针对粒子群优化算法容易陷入局部最优、收敛精度不高以及收敛速度较慢的问题,本文提出一种混合分层自主学习量子粒子群优化算法HHQPSO。首先,根据粒子适应度值和迭代次数将种群动态划分为三个阶层:上、下两层粒子分布较少,分别采用局部学习模型和全局学习模型,以增强粒子多样性;中层粒子分布较多,采用混合自适应量子学习模型。其次,在混合量子模型中提出改进差分策略以更新粒子的随机位置,并引入Levy飞行策略以提高算法的收敛精度和收敛速度。最后,分别在9个典型测试函数上对6种改进粒子群算法进行仿真对比实验。实验结果表明,HHQPSO算法在收敛精度、速度和稳定性上均有着较为明显的优势,特别适用于多峰函数寻优。
In order to solve the problem that particle swarm optimization is easy to be trapped in local optimum, low convergence precision and slow convergence speed, a hybrid hierarchical autonomous learning quantum particle swarm optimization (HHQPSO) is proposed. Firstly, the population is dynamically divided into three layers according to the fitness value of particles and the number of iterations. Since the particles of upper and lower layers are less distributed, local learning model and global learning model are respectively used to increase the diversity of particles. While the particles of middle layer are more distributed, the hybrid adaptive quantum learning model is adopted. Secondly, an improved differential strategy is proposed to update the random positions of particles in the hybrid quantum model, and the Levy flight strategy is introduced to improve the convergence accuracy and speed of the algorithm. Finally, six improved particle swarm optimization algorithms are compared on 9 typical test functions. Experimental results show that the HHQPSO algorithm has obvious advantages in convergence accuracy, speed and stability, especially suitable for multi-peak search function optimization.
量子粒子群差分策略Levy飞行策略自主学习
quantum particle swarmdifferential strategyLevy flight strategyautonomous learning
吴志攀, 赵跃龙, 罗中良,等. 基于PSO-BP神经网络的车牌号码识别技术[J]. 中山大学学报(自然科学版), 2017, 56(1): 46-52.
陈洋波, 徐会军, 李计. 流域洪水预报分布式模型参数自动优选[J]. 中山大学学报(自然科学版), 2017, 56(3): 125-133.
孙辉, 邓志诚, 赵嘉,等. 优质个体最优动态空间变异的粒子群优化算法[J]. 计算机应用研究, 2020, 37(8): 2344-2348+2370.
张鹏威. 采用正弦映射与扩张算子的二进制粒子群优化算法[J]. 小型微型计算机系统, 2019, 40(6): 1160-1164.
CHEN K, ZHOU F, YIN L, et al. A hybrid particle swarm optimizer with sine cosine acceleration coefficients [J]. Information Sciences, 2018, 422: 218-241.
HAKLI H, UĞUZ H. A novel particle swarm optimization algorithm with Levy flight [J]. Applied Soft Computing, 2014, 23: 333-345.
LIANG J J, SUGANTHAN P N. Dynamic multi-swarm particle swarm optimizer [C]//Proceedings of 2005 IEEE Swarm Intelligence Symposium, 2005: 124-129.
袁小平, 蒋硕. 基于分层自主学习的改进粒子群优化算法 [J]. 计算机应用, 2019, 39(1) : 148-153.
WANG D J,SUN J,XU W B. Quantum-behaved particle swarm optimization for security constrained economic dispatch[C]//The Fifth International Conference on Distributed Computing and Applications for Business Engineering and Sciences, Hangzhou,2006: 42-46.
佃松宜, 梁伟博, 赵涛. 基于改进QPSO的两轮移动机器人区间二型模糊逻辑控制 [J]. 控制与决策, 2019, 34(2): 261-268.
丁青锋, 尹晓宇. 差分进化算法综述 [J]. 智能系统学报, 2017, 12(4): 431-442.
ZHANG H,XIE J, HU Q,et al. A hybrid DPSO with levy flight for scheduling MIMO radar tasks [J]. Applied Soft Computing, 2018(71): 242-254.
曹天问, 雷秀娟, 杜明煜. 一种基于Levy飞行的细菌觅食优化算法 [J]. 计算机应用研究, 2015, 32(9): 2601-2605.
RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
YAN B, ZHAO Z, ZHOU Y, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters [J]. Computer Physics Communications, 2017, 219: 79-86.
CHEN K, ZHOU F, YIN L, et al. A hybrid particle swarm optimizer with sine cosine acceleration coefficients [J]. Information Sciences, 2018, 422: 218-241.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构