1.有害生物控制与资源利用国家重点实验室/中山大学生命科学学院,广东 广州 510275
2.贵州省山地珍稀动物与经济昆虫重点实验室/;贵阳学院生物与环境工程学院,贵州 贵阳 550005
黎丹(1993年生),女;研究方向: 农业昆虫与害虫防治; E-mail:lidan88@mail2.sysu.edu.cn
张文庆(1965年生),男;研究方向: 农业昆虫学; E-mail:lsszwq@mail.sysu.edu.cn
纸质出版日期:2020-11-25,
收稿日期:2020-08-30,
扫 描 看 全 文
黎丹,毛婕,李灿等.褐飞虱安全高效RNAi靶基因的筛选及Snf 7同源基因的控害效果[J].中山大学学报(自然科学版),2020,59(06):1-11.
LI Dan,MAO Jie,LI Can,et al.Screening of safe and efficient RNAi target genes and the control effects of a Snf7 homologous gene in the brown planthopper[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):1-11.
黎丹,毛婕,李灿等.褐飞虱安全高效RNAi靶基因的筛选及Snf 7同源基因的控害效果[J].中山大学学报(自然科学版),2020,59(06):1-11. DOI: 10.13471/j.cnki.acta.snus.2020.08.30.2020E043.
LI Dan,MAO Jie,LI Can,et al.Screening of safe and efficient RNAi target genes and the control effects of a Snf7 homologous gene in the brown planthopper[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):1-11. DOI: 10.13471/j.cnki.acta.snus.2020.08.30.2020E043.
褐飞虱(
Nilaparvata lugens
)是一种具有高繁殖力、强适应性和迁飞性的重要水稻害虫。为更有效地获得安全高效的褐飞虱RNAi靶标基因,建立了一套安全高效RNAi靶基因的筛选流程,获得了32个安全高效致死候选基因,并检测了其中12个基因的RNAi效率。进一步对其中的转运必需内吞体分选复合物Ⅲ 亚基Snf7同源基因(简称为
NlSnf7
)的控害效果进行了研究。
NlSnf7
基因在褐飞虱各个时期和组织均有表达。通过注射法和饲喂法RNAi技术对
NlSnf7
进行低剂量干扰,结果表明干扰后
NlSnf7
的mRNA表达水平显著降低,褐飞虱的校正死亡率在每头注射50 ng后第13天可达70%,饲喂50 ng/μL后第9天可达48%;注射ds
NlSnf7
后第5天NlSnf7的蛋白水平也显著降低。此外,选择无连续21 bp相同序列的亚洲玉米螟和白背飞虱进行ds
NlSnf7
注射,发现与对照组相比,实验组均无显著变化。这些结果表明ds
NlSnf7
片段是一个高效安全的RNAi靶标分子。
The brown planthopper (BPH,
Nilaparvata lugens
)
is an important rice pest with high fecundity, strong adaptability and migratory ability. In order to obtain safe and efficient RNAi target genes, we established a set of process for RNAi target gene screening, and 32 candidate target genes were obtained,of which 12 were tested for RNAi efficiency. Furthermore,we investigated the control effects of a endosomal sorting complex which was required for transport III subunit Snf7 (
NlSnf7
).
NlSnf7
gene was expressed in various stages and tissues of BPH. After RNA interference of
NlSnf7
, its mRNA expression level was significantly reduced, and the corrected mortality rate of BPH reached 70% on the 13th day after injection of ds
NlSnf7
at 50 ng/head, and 48% on the 9th day after feeding of ds
NlSnf7
at 50 ng/μL. NlSnf7 protein was also significantly reduced on the 5th day after injection of ds
NlSnf7
. In addition, when ds
NlSnf7
was injected into
Ostrinia furnacalis
and
Sogatella furcifera
in which no 21 bp continuously identical sequence was found, there were no significant changes between the experimental group and the control group. These results indicated that ds
NlSnf7
fragment is an efficient and safe RNAi target molecule.
褐飞虱(Nilaparvata lugens)RNAi靶基因转运必需内吞体分选复合物Ⅲ亚基Snf7
Nilaparvata lugensRNAi target genesendosomal sorting complex required for transport Ⅲ subunit Snf7
全国褐稻虱科研协作组. 我国褐稻虱迁飞规律研究的进展[J]. 中国农业科学, 1981, 14(2):52-59.
National Research Collaboration on Brown Rice Lice. Progress in the study of migratory flight of brown rice lice in China[J]. Chinese Journal of Agricultural Sciences, 1981, 14(2):52-59.
谢家楠, 廖启荣, 郭建军. 褐飞虱迁飞路线研究进展[J]. 贵州农业科学, 2011, 39(1):114-117.
XIE J N, LIAO Q R, GUO J J. Research progress in migratory routes of Nilaparvata lugens[J]. Guizhou Agricultural Sciences, 2011, 39(1):114-117.
王栋, 陈源泉, 李道亮,等. 农业领域若干颠覆性技术初探[J]. 中国工程科学, 2018, 20(6):57-63.
WANG D, CHEN Y Y, LI D L, et al. Foresight of disruptive technologies in agricultural engineering[J]. Engineering Science of China, 2018, 20(6):57-63.
ARAKANE Y, SPECHT C A, KRAMER K J, et al. Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2008, 38(10):959-962.
RAMASESHADRI P, SEGERS G, FLANNAGAN R, et al. Physiological and cellular responses caused by RNAi-mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgiferavirgifera ) larvae[J]. PLoS One, 2013, 8(1):e54270.
KNORR E, BINGSOHN L, KANOST M R, et al. Tribolium castaneum as a model for high-throughput RNAi-screening[J]. Adv Biochem Eng Biotechnol, 2013, 136(6):163-178.
YU R, XU X X, LIANG Y K, et al. The insect ecdysone receptor is a good potential target for RNAi-based pest control[J]. International Journal of Biological Sciences, 2014, 10(10): 1171-1180.
黎丹, 官展文, 黄诗韵,等. 褐飞虱卵巢特异性基因Nl10847的功能初探[J]. 环境昆虫学报, 2018, 40(3):497-504.
LI D, GUAN Z W, HUANG S Y, et al. Functional analysis of ovarian specific gene Nl10847 in the brown planthopper Nilaparvata lugens[J].Journal of Environmental Entomology, 2018, 40(3):497-504.
CHEN J, LIANG Z, LIANG Y, et al. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens[J]. Insect Biochemistry & Molecular Biology, 2013, 43 (9): 839-848.
BAUM J A, BOGAERT T, CLINTON W, et al. Control of coleopteran insect pests through RNA interference[J]. Nature Biotechnology, 2007, 25(11):1322-1326.
ULRICH E, DAO V A, MAJUMDAR U, et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target[J]. BMC Genomics, 2015, 16(1):674.
BOLOGNESI R, RAMASESHADRI P, ANDERSON J, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte)[J]. PLoS One, 2012, 7(10):e47534.
MAO Y B, CAI W J, WANG J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nature Biotechnology, 2007, 25(11):1307-1313.
WANG Y B, ZHANG H, LI H C, et al. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control[J]. PLoS One, 2011, 6(4):e18644.
ALSFORD S, TURNER D J, OBADO S O, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome[J]. Genome Research, 2011, 21(6):915-924.
BABST M, KATZMANN D J, ESTEPA-SABAL E J, et al. Escrt-Ⅲ: an endosome-associated heterooligomeric protein complex required for mvb sorting[J]. Developmental Cell, 2002, 3(2):271-282.
CAPALBO L, MONTEMBAULT E, TAKEDA T, et al. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-Ⅲ Snf7 proteins during cytokinesis[J]. Open Biology, 2012, 2(5):120070.
BACHMAN P M, BOLOGNESI R, WILLIAM J. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte)[J]. Transgenic Research, 2013, 22(6):1207-1222.
KOČI J, RAMASESHADRI P, BOLOGNESI R, et al. Ultrastructural changes caused by Snf7 RNAi in larval enterocytes of western corn rootworm (Diabrotica virgifera virgifera Le Conte)[J]. PLoS One, 2014, 9(1):e83985.
HUVENNE H, SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review[J]. Journal of Insect Physiology, 2010, 56(3):227-235.
TERENIUS O, PAPANICOLAOU A, GARBUTT J S, et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design[J]. Journal of Insect Physiology, 2011, 57(2):231-245.
SINGH S, GUPTA M, PANDHER S, et al. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.)(Thysanoptera: Thripidae)[J]. BMC Molecular Biology, 2019, 20(1):6.
JING LÜ, LIU Z, GUO W, et al. Feeding delivery of dsHvSnf7 Is a promising method for management of the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae)[J]. Insects, 2019, 11(1):34.
CHRISTIAENS O , PRENTICE K , PERTRY I , et al. RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus[J]. Entific Reports, 2016, 6:38836.
DAS S , DEBNATH N , CUI Y R , et al. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis[J]. ACS Applied Materials & Interfaces, 2015, 7(35):19530-19535.
TAN J, LEVINE S L, BACHMAN P M, et al. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests[J]. Environmental Toxicology & Chemistry, 2015, 35(2):287-294.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构