1.衡阳师范学院数学与统计学院, 湖南 衡阳 421002
2.衡阳师范学院南岳学院数学与计算科学系, 湖南 衡阳 421008
曾云辉(1978年生),男;研究方向:微分方程定性理论;E-mail:chj8121912@sina.com
罗李平(1964年生),男;研究方向:(脉冲)偏微分方程解的性态;E-mail:luolp3456034@163.com
纸质出版日期:2021-11-25,
网络出版日期:2021-01-09,
收稿日期:2020-07-29,
录用日期:2020-10-14
扫 描 看 全 文
曾云辉,汪安宁,汪志红等.具无界中立系数的三阶Emden-Fowler微分方程的弱振动性[J].中山大学学报(自然科学版),2021,60(06):169-179.
ZENG Yunhui,WANG Anning,WANG Zhihong,et al.Weak oscillation of third-order Emden-Fowler neutral differential equations with unbounded neutral coefficients[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):169-179.
曾云辉,汪安宁,汪志红等.具无界中立系数的三阶Emden-Fowler微分方程的弱振动性[J].中山大学学报(自然科学版),2021,60(06):169-179. DOI: 10.13471/j.cnki.acta.snus.2020.07.29.2020A037.
ZENG Yunhui,WANG Anning,WANG Zhihong,et al.Weak oscillation of third-order Emden-Fowler neutral differential equations with unbounded neutral coefficients[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):169-179. DOI: 10.13471/j.cnki.acta.snus.2020.07.29.2020A037.
研究一类具有无界中立系数的三阶Emden-Fowler微分方程解的弱振动性。通过引入参数函数和广义Riccati变换,运用积分平均技术和一些分析技巧,获得了方程所有解弱振动的几个新的振动准则,所得结果推广和完善了最近文献中的一些结果。
The weak oscillation of solutions of third-order Emden-Fowler differential equations with unbounded neutral coefficients is studied. By introducing parameter function and the generalized Riccati transformations , using integral averaging technique and some necessary technique, some new oscillation criteria which ensure that all solutions of the studied equation weakly oscillates are obtained. The results generalize and perfect a number of related results in the literature recently.
三阶Emden-Fowler微分方程弱振动性非振动性
third-orderEmden-Fowler differential equationweak oscillationnonoscillatory
GRAEF J R, SAKER S H. Oscillation theory of third-order nonlinear functional differential equations [J]. Math Hiroshima J, 2013, 43(24): 49-72.
LI T , ROGOVCHENKO Y V. Asymptotic behavior of higher-order quasilinear neutral differential equations [J]. Abstract and Applied Analysis, 2014:Article ID 395368.
BACULIKOVA B, DZURINA J. Oscillation of third-order neutral differential equations [J]. Math and Comp Mode,2010,52(12): 215-226.
BACULIKOVA B, RANI B, SELVARANGAM S, et al.Properties of Kneser's solution for half-linear third order neutral differential equations,Acta Mathematica Hungarica, 2017, 152(2): 525-533.
DOSLA Z, LISKA P. Oscillation of third-order nonlinear neutral differential equations [J].Applied Mathematics Letters, 2016, 56: 42-48.
DZURINA J, GRACE S R, JADLOVSKA I. On nonexistence of Kneser solutions of third-order neutral delay differential equations [J]. Applied Mathematics Letters, 2019,88: 193-200.
GRACE S R, GRAEF J R, EL-BELTAGY M A. On the oscillation of third order neutral delay dynamic equations on time scales [J]. Computers & Mathematics with Applications, 2012,63(4): 775-782.
GRACE S R, GRAEF J R, TUNC E. Oscillatory behavior of a third-order neutral dynamic equation with distributed delays [C]//in Proceedings of the 10th Colloquium on the Qualitative Theory of Differential Equations,Szeged,Hungary, 2016: 1-14.
GRACE S R, JADLOVSKA I. Oscillatory behavior of odd-order nonlinear differential equations with a nonpositive neutral term [J]. Dynamic Systems and Applications,2018, 27(1): 125-136.
HASSAN T S, GRACE S R. Oscillation criteria for third order neutral nonlinear dynamic equations with distributed deviating arguments on time scales [J]. Tatra Mountains Mathematical Publications,2014,61(1): 141-161.
JIANG Y, JIANG C, LI T. Oscillatory behavior of third-order nonlinear neutral delay differential equations [J]. Mathematics in Practice & Theory, 2009, 2016(1): 1-12.
LI T, TANDAPANI E. Oscillation of solutions to odd-order nonlinear neutral functional differential equations [J]. Electronic Journal of Differential Equations, 2011: Article ID 23.
MIHALKOVA B. KOSTIKOVA E. Boundedness and oscillation of third order neutral differential equations [J]. Tatra Mountains Mathematical Publications, 2009, 43(1): 137-144.
LIN W. Oscillations of certain third order nonlinear neutral functional differential equations with damping [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2015, 54(6): 53-56.
GRAEF J R, TUNC E, GRACE S R. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation [J]. Mathematica Opuscula,2017,37(6): 839-852.
LI T, ZHANG C. Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient [J]. Advances in Difference Equations, 2013: Article ID 333.
TUNC E. Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments [J]. Electronic Journal of Differential Equations,2017: Article ID 16.
CHATZARAKIS G E, GRACE S R, JADLOVSKA I, et al. Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients [J]. Hindawi Complexity,2019:Article ID 5691758.https://doi.org/10.1155/2019/5691758https://doi.org/10.1155/2019/5691758.
ZHANG Z, WANG X, YU Y. Oscillation of third-order half-linear neutral differential equations with distributed delay [J]. Acta Math Appl,2015,38(3): 450-459.
CANDAN T. Oscillatory behavior of second-order nonlinear functional differential equations with distributed deviating arguments [J].Appl Math Comput, 2015, 262(15): 199-203.
AGARWALR P, GRACE S R, O’REGAN D. Oscillation theory for difference and functional differential equations [M].Dordrecht: Marcel Dekker,Kluwer Academic, 2000.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构