1.中山大学航空航天学院,广东 广州 510006
2.日本理化学研究所,日本 东京 197-0804
蒋子超(1996年生),男;研究方向:计算流体力学、并行算法、偏微分方程数值解;E-mail:jiangzch3@mail2.sysu.edu.cn
姚清河(1980年生),男;研究方向:计算流体力学、并行算法、偏微分方程数值解;E-mail: yaoqhe@mail.sysu.edu.cn
纸质出版日期:2021-11-25,
网络出版日期:2020-11-12,
收稿日期:2020-06-13,
录用日期:2020-07-23
扫 描 看 全 文
蒋子超,江俊扬,孙哲等.面向大规模并行的全隐式托卡马克MHD数值模拟[J].中山大学学报(自然科学版),2021,60(06):9-14.
JIANG Zichao,JIANG Junyang,SUN Zhe,et al.Large-scale parallel simulation of MHD in Tokamak based on a fully implicit method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):9-14.
蒋子超,江俊扬,孙哲等.面向大规模并行的全隐式托卡马克MHD数值模拟[J].中山大学学报(自然科学版),2021,60(06):9-14. DOI: 10.13471/j.cnki.acta.snus.2020.06.13.2020B067.
JIANG Zichao,JIANG Junyang,SUN Zhe,et al.Large-scale parallel simulation of MHD in Tokamak based on a fully implicit method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):9-14. DOI: 10.13471/j.cnki.acta.snus.2020.06.13.2020B067.
提出了一种基于环形托卡马克模型的MHD(magneto hydrodynamic)方程并行求解算法,开展了等离子体的非理想MHD不稳定性及其演化过程的数值模拟,采用了全隐式的离散方法,并运用Newton-Krylov方法求解非线性系统。相对传统算法,文章提出的基于全隐格式的求解算法具有时间步长限制小、并行可扩展性高的优势,对于大规模的并行计算具有良好的适应性。根据在超级计算平台上的并行测试结果,文章开发的求解器在大规模并行中具有良好的并行效率与并行可扩展性,与传统求解算法结果具有良好的数值一致性,可适用于大规模的并行磁流体仿真计算。
In this paper, a parallel solving algorithm for the MHD equations based on the toroidal tokamak model is proposed, and the algorithm focuses on the numerical simulation of the nonideal MHD instability and its development process. In the proposed algorithm, we selected a fully-implicit scheme in the discretization, which has less limited time steps than the classic methods, and Newton-Krylov method for solving the nonlinear systems. Furthermore, according to the scalability test on the HPC platform, the solver based on the proposed algorithm has high parallel efficiency in the large-scale parallel computation, and the computational result has a good numerical consistency with the classic solvers. Therefore, the proposed algorithm has excellent adaptability for large-scale numerical simulation of MHD in the Tokamak plasma.
磁流体动力学并行计算等离子体仿真磁流体不稳定性
magneto hydrodynamicparallel computationplasma simulationmagneto hydrodynamic instability
何开辉, 潘传红, 冯开明. 托卡马克等离子体大破裂及防治综述[J]. 中国核科技报告, 2002(00):117-129.
BARMIN A A, KULIKOVSKIY A G, POGORELOV N V. Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics[J].Journal of Computational Physics, 1996,126(1): 77-90.
NESSYAHU H, TADMOR E. Non-oscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics, 1990, 87(2): 408-463.
陶詹晶. 磁流体力学方程的高效数值方法研究[D]. 南昌:南昌航空大学, 2011.
HARNED D S, KERNER W. Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation[J]. Journal of Computational Physics, 1985, 60(1): 62-75.
SCHNACK D D, BARNES D C, MIKIC Z, et al. Semi-implicit magnetohydrodynamic calculations[J]. Journal of Computational Physics, 1987, 70(2): 330-354.
HARNED D S, SCHNACK D D. Semi-implicit method for long time scale magnetohydrodynamic computations in three dimensions [J]. Journal of Computational Physics, 1986, 65(1): 57-70.
LÜTJENS H, LUCIANI J F. The XTOR code for nonlinear 3D simulations of MHD instabilities in Tokamak plasmas[J]. Journal of Computational Physics, 2008, 227(14): 6944-6966.
PLIMPTON S J, SCHNACK D D, TARDITI A, et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements[J]. Journal of Computational Physics, 2005, 195(1): 355-386.
PARK W, BELOVA E V, FU G Y, et al. Plasma simulation studies using multilevel physics models[J]. Physics of Plasmas, 2000, 6(5): 1796-1803.
DUDSON B D, UMANSKY M V, XU X Q, et al. BOUT: A framework for parallel plasma fluid simulations [J]. Computer Physics Communications, 2008, 180(9): 1467-1480.
WANG S, MA Z W. Influence of toroidal rotation on resistive tearing modes in tokamaks [J]. Physics of Plasmas, 2015, 22(12): 2251-S202.
ZHU J, FU G Y, MA Z W. Nonlinear dynamics of toroidal Alfvén eigenmodes driven by energetic particles[J]. Physics of Plasmas, 2013, 20(7): 21
-E.
SAKAI J I, FUSHIKI T. 3-D MHD simulation of the generation of a shell current loop with closure current[J]. Solar Physics, 1995, 156(2): 281-292.
ZHANG X G, PU Z Y, MA Z W, et al. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations[J]. Science in China, 2008, 51(3): 323-336.
CHENG C Z, CHANCE M S. NOVA: A nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas[J]. Journal of Computational Physics, 1987, 71(1): 124-146.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构