重庆师范大学数学科学学院, 重庆 401331
张欢(1995年生),女;研究方向:偏微分方程反问题;E-mail:1954501796@qq.com
刘立汉(1987年生),男;研究方向:偏微分方程反问题;E-mail:mathsedu2013@163.com
纸质出版日期:2021-07-25,
网络出版日期:2020-11-05,
收稿日期:2020-05-02,
录用日期:2020-06-09
扫 描 看 全 文
张欢,刘立汉.基于分裂法的内部Neumann反散射问题[J].中山大学学报(自然科学版),2021,60(04):170-176.
ZHANG Huan,LIU Lihan.The decomposition method for an interior inverse scattering problem with a Neumann boundary condition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):170-176.
张欢,刘立汉.基于分裂法的内部Neumann反散射问题[J].中山大学学报(自然科学版),2021,60(04):170-176. DOI: 10.13471/j.cnki.acta.snus.2020.05.02.2020A016.
ZHANG Huan,LIU Lihan.The decomposition method for an interior inverse scattering problem with a Neumann boundary condition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):170-176. DOI: 10.13471/j.cnki.acta.snus.2020.05.02.2020A016.
通过分裂法研究了具有Neumann边界条件的内部声波反散射问题。首先,证明了在Neumann边界条件下散射体的位置、形状可由腔体内部的点源测量数据唯一确定。然后,用分裂法的思想来反演未知散射体的边界及其形状。最后,给出了2个数值例子来验证该方法的可行性和有效性。
An internal acoustic inverse scattering problem with a Neumann boundary condition is studied by using the decomposition method. First, it is proved that the position and shape of a scatterer can be uniquely determined by the measurement data of the point source inside the cavity with the Neumann boundary condition. Then, the boundary of the unknown scatter and its shape is reconstructed by using the idea of the decomposition method. Finally, two numerical examples are given to verify the feasibility and effectiveness of the method.
内部反散射Neumann边界条件分裂法
interior inverse scattering problemNeumann boundary conditionthe decomposition method
COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory [M]. Berlin: Springer, 1998.
JAKUBIK P, POTTHAST R. Testing the integrity of some cavity–the Cauchy problem and the range test [J]. Applied Numerical Mathematics, 2008, 58(6): 899-914.
QIN H, COLTON D. The inverse scattering problem for cavities [J]. Applied Numerical Mathematics, 2012, 62(6): 699-708.
ZENG F, CAKONI F, SUN J. An inverse electromagnetic scattering problems for a cavity [J]. Inverse Problems, 2011, 27: 125002.
QIN H, COLTON D. The inverse scattering problem for cavities with impedance boundary condition [J]. Advances in Computational Mathematics, 2012, 36(2): 157-174.
刘立汉, 崔晓英, 蔡静秋. 基于交互间隙法的内部Neumann反散射问题[J]. 中山大学学报(自然科学版), 2019, 58(1): 149-155.
LIU L, CUI X, CAI J. Reciprocity gap method for an interior inverse scattering problem with a Neumann boundary condition [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(1): 149-155.
刘立汉, 蔡静秋, 崔晓英. 基于正则的Newton迭代法的内部Neumann反散射问题[J]. 中山大学学报(自然科学版), 2019, 58(2): 135-141.
LIU L, CAI J, CUI X. Regularized Newton iteration method for an interior inverse scattering problem with a Neumann boundary condition [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(2): 135-141.
HU Y, CAKONI F, LIU J. The inverse scattering problem for a partially coated cavity with interior measurements [J]. Applicable Analysis, 2014, 93(5): 936-956.
CAKONI F, COLTON D, MENG S. The inverse scattering problem for a penetrable cavity with internal measurements [J], Communications in Comtemporary Mathematics, 2014, 615: 71-88.
MENG S, HADDAR H, CAKONI F. The factorization method for a cavity in an inhomogeneous medium [J]. Inverse Problems, 2014, 30(4): 045008.
LIU L, CAI J, XU Y. Regularized Newton iteration method for a penetrable cavity with internal measurements in inverse scattering problem [J]. Mathematical Methods in the Applied Sciences, 2020, 43(5): 2665-2678.
LIU L. The inverse scattering problem for a partially coated penetrable cavity with interior measurements [J]. Applicable Analysis, 2017, 96(5): 844-868.
ZENG F, SUAREZ P, SUN J. A decomposition method for an interior inverse scattering problem [J]. Inverse Problems and Imaging, 2013, 7(1): 291-303.
COLTON D, KRESS R. Integral equation methods in scattering theory [M]. New York: Wiley, 1983.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构