天津大学应用数学中心,天津 300072
孙萌(1995年生),女;研究方向:调和分析;E-mail:Sunmeng_666@163.com
纸质出版日期:2021-09-25,
网络出版日期:2020-09-17,
收稿日期:2020-04-30,
录用日期:2020-06-05
扫 描 看 全 文
孙萌.热方程在非负Ricci曲率度量测度空间上的Cauchy问题[J].中山大学学报(自然科学版),2021,60(05):152-165.
SUN Meng.Cauchy problems for heat equations in metric measure spaces with non-negative Ricci curvature[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):152-165.
孙萌.热方程在非负Ricci曲率度量测度空间上的Cauchy问题[J].中山大学学报(自然科学版),2021,60(05):152-165. DOI: 10.13471/j.cnki.acta.snus.2020.04.30.2020B047.
SUN Meng.Cauchy problems for heat equations in metric measure spaces with non-negative Ricci curvature[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):152-165. DOI: 10.13471/j.cnki.acta.snus.2020.04.30.2020B047.
设
<math id="M1"><mo stretchy="false">(</mo><mi>X</mi><mo>
</mo><mi>d</mi><mo>
</mo><mi>μ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469726&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469719&type=
10.83733368
2.96333337
是满足非负Ricci曲率条件的度量测度空间。在上半空间
<math id="M2"><mi>X</mi><mo>×</mo><msub><mrow><mi mathvariant="bold">R</mi></mrow><mrow><mo>+</mo></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469765&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469746&type=
9.39799976
3.21733332
上,考虑热方程的Cauchy问题。热方程为
<math id="M3"><mfenced open="{" close="" separators="|"><mrow><mtable columnalign="left"><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo><mo>-</mo><msub><mrow><mi mathvariant="normal">Δ</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn mathvariant="normal">0</mn><mo>
</mo><mtext> </mtext><mi>x</mi><mo>∈</mo><mi>X</mi><mo>
</mo><mtext> </mtext><mi>t</mi><mo>></mo><mn mathvariant="normal">0</mn><mo>
</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>
</mo><mtext> </mtext><mi>x</mi><mo>∈</mo><mi>X</mi><mo>
</mo></mtd></mtr></mtable></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469780&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469775&type=
67.98733521
9.90600014
其中
<math id="M4"><msub><mrow><mi mathvariant="normal">Δ</mi></mrow><mrow><mi>x</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469807&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469784&type=
3.13266683
3.30200005
是
<math id="M5"><mi>X</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469817&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469823&type=
1.94733346
2.28600001
上的Laplace算子。我们得到了:若
<math id="M6"><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469863&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469849&type=
8.29733276
2.96333337
是热方程的解(称其为热函数)且满足Carleson测度条件
则它的迹
<math id="M7"><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469876&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469857&type=
18.28800011
2.96333337
是有界平均振动(BMO)函数。反之,迹满足BMO条件的所有热函数
<math id="M8"><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469891&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469897&type=
8.29733276
2.96333337
恰好满足Carleson测度条件
<math id="M9"><mo stretchy="false">(</mo><mi mathvariant="normal">*</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469927&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469905&type=
3.55599999
2.96333337
式。
(*)
<math id="M10"><munder><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">p</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></munder><mfrac><mrow><mn mathvariant="normal">1</mn></mrow><mrow><mi>μ</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mfrac><msubsup><mo>∫</mo><mrow><mn mathvariant="normal">0</mn></mrow><mrow><msubsup><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></mrow></msubsup><mrow><msub><mo>∫</mo><mrow><mi>B</mi><mo stretchy="false">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub><mo stretchy="false">)</mo></mrow></msub><mrow><msup><mrow><mfenced separators="|"><mrow><mo stretchy="false">|</mo><mi>t</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo stretchy="false">|</mo><mo>+</mo><mo stretchy="false">|</mo><mroot><mrow><mi>t</mi></mrow><mrow/></mroot><msub><mrow><mo>∇</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">|</mo></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mi mathvariant="normal">d</mi><mi>μ</mi><mfrac><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac></mrow><mo>≤</mo><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469941&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469932&type=
82.88867188
8.80533314
,
Let
<math id="M11"><mo stretchy="false">(</mo><mi>X</mi><mo>
</mo><mi>d</mi><mo>
</mo><mi>μ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49472936&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49472947&type=
12.61533356
3.47133350
be a metric measure space with non-negative Ricci curvature. This paper is focuses on the Cauchy problem for the heat equation on the upper half-space
<math id="M12"><mi>X</mi><mo>×</mo><msub><mrow><mi mathvariant="bold">R</mi></mrow><mrow><mo>+</mo></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469999&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469991&type=
10.83733368
3.80999994
.The heat equation is
<math id="M13"><mfenced open="{" close="" separators="|"><mrow><mtable columnalign="left"><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo><mo>-</mo><msub><mrow><mi mathvariant="normal">Δ</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn mathvariant="normal">0</mn><mo>
</mo><mtext> </mtext><mi>x</mi><mo>∈</mo><mi>X</mi><mo>
</mo><mtext> </mtext><mi>t</mi><mo>></mo><mn mathvariant="normal">0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>
</mo><mtext> </mtext><mi>x</mi><mo>∈</mo><mi>X</mi><mo>
</mo></mtd></mtr></mtable></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470033&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470011&type=
64.34667206
9.90600014
where
<math id="M14"><msub><mrow><mi mathvariant="normal">Δ</mi></mrow><mrow><mi>x</mi></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470060&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470047&type=
3.55599999
3.80999994
is the Laplace operator on
<math id="M15"><mi>X</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49471777&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49471774&type=
2.28600001
2.62466669
. We derive that a function
<math id="M16"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473814&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473801&type=
1.10066664
3.47133350
of bounded mean oscillation BMO is the trace of solution
<math id="M17"><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mi>t</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470436&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470417&type=
9.65200043
3.47133350
of heat equation above (called Caloric function),
<math id="M18"><mi>u</mi><mo stretchy="false">(</mo><mi>x</mi><mo>
</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470421&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470410&type=
21.33600044
3.47133350
, whenever
<math id="M19"><mi>u</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49472750&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49472749&type=
1.86266661
2.62466669
satisfies the following Carleson measure condition
(*)
<math id="M20"><munder><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">u</mi><mi mathvariant="normal">p</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></munder><mfrac><mrow><mn mathvariant="normal">1</mn></mrow><mrow><mi>μ</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mfrac><msubsup><mo>∫</mo><mrow><mn mathvariant="normal">0</mn></mrow><mrow><msubsup><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></mrow></msubsup><mrow><msub><mo>∫</mo><mrow><mi>B</mi><mo stretchy="false">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>
</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>B</mi></mrow></msub><mo stretchy="false">)</mo></mrow></msub><mrow><msup><mrow><mfenced separators="|"><mrow><mo stretchy="false">|</mo><mi>t</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo stretchy="false">|</mo><mo>+</mo><mo stretchy="false">|</mo><mroot><mrow><mi>t</mi></mrow><mrow/></mroot><msub><mrow><mo>∇</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo stretchy="false">|</mo></mrow></mfenced></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mi mathvariant="normal">d</mi><mi>μ</mi><mfrac><mrow><mi mathvariant="normal">d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac></mrow><mo>≤</mo><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470163&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470144&type=
82.88867188
8.80533314
,
Conversely, the condition
<math id="M21"><mo stretchy="false">(</mo><mi mathvariant="normal">*</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470172&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49470168&type=
4.14866638
3.47133350
characterizes all the Caloric functions whose traces are in BMO space.
热函数度量测度空间BMOCarleson测度
Caloric functionmetric measure spaceBMOCarleson measure
FABES E B, NERI U. Characterization of temperatures with initial data in BMO[J]. Duke Mathematical Journal, 1975, 42: 725-734.
DUONG X T, YAN L X, ZHANG C. On characterization of Poisson integrals of Schrödinger operators with BMO traces[J]. Journal of Functional Analysis, 2014, 266(4): 2053-2085.
JIANG R J, XIAO J, YANG D C. Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants[J]. Analysis and Applications, 2016, 14(5): 679-703.
FABES E B, JOHNSON R L, NERI U. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and <math id="M438"><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>λ</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473885&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473884&type=4.656666763.21733332[J]. Indiana University Mathematics Journal, 1976, 25(2): 159-170.
CHEN J C. A representation theorem of harmonic functions and its application to BMO on manifolds[J]. Applied Mathematics, 2001, 16: 279-284.
ZHANG H C, ZHU X P. On a new definition of Ricci curvature on Alexandrov spaces[J]. Acta Mathematica Scientia, Series B(English Edition), 2010, 30(6): 1949-1974.
ZHANG H C, ZHU X P. Yau's gradient estimates on Alexandrov spaces[J]. Journal of Differential Geometry, 2012, 91(3):445-522.
AMBROSIO L, GIGLI N, SAVARÉ G. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds[J]. The Annals of Probability, 2015, 43(1): 339-404.
AMBROSIO L, GIGLI N, SAVARÉ G. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces[J]. Revista Matemática Iberoamericana, 2013, 29: 969-996.
JIANG R J. The Li-Yau inequality and heat kernels on metric measure spaces[J]. Journal de Mathématiques Pures et Appliquées, 2015, 104(1): 29-57.
GIGLI N. On the differential structure of metric measure spaces and applications[J/OL]. (2013-05-21)[2020-04-30]. https://arxiv.org/pdf/1205.6622.pdfhttps://arxiv.org/pdf/1205.6622.pdf.
ERBAR M, KUWADA K, STURM K T. On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[J]. Inventiones Mathematicae, 2015, 201: 993-1071.
HOFMANN S, LU G, MITREA D, et al. Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates [J/OL]. Memoirs of the American Mathematical Society, 2011, 214(1007): 1-84.
STURM K T. On the geometry of metric measure spaces II[J]. Acta Mathematica, 2006, 196: 133-177.
RAJALA T. Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm[J]. Journal of Functional Analysis, 2012, 263: 896-924.
JIANG R J, LI H Q, ZHANG H C. Heat kernel bounds on metric measure spaces and some applications[J]. Potential Analysis, 2016, 44(3): 601-627.
DUONG X T, YAN L X. New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications[J]. Communications on Pure and Applied Mathematics, 2005, 58(10): 1375-1420.
STURM K T. Analysis on local dirichlet spaces III [J]. Journal de Mathématiques Pures et Appliquées,1996, 75(3): 273-297.
HOU Q, SALOFF-COSTE L. Time regularity for local weak solutions of the heat equation on local Dirichlet spaces[J/OL]. (2019-11-30)[2020-04-03].https://arxiv.org/abs/1912.12998https://arxiv.org/abs/1912.12998.
ZHANG H C, ZHU X P. Local Li-Yau's estimates on <math id="M439"><mi mathvariant="normal">R</mi><mi mathvariant="normal">C</mi><msup><mrow><mi mathvariant="normal">D</mi></mrow><mrow><mi mathvariant="normal">*</mi></mrow></msup><mo stretchy="false">(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473886&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49473874&type=15.917332653.21733332 metric measure spaces[J]. Calculus of Variations and Partial Differential Equations, 2016, 55: 30 .
DZIUBAŃSKI J, GARRIGÓS G, MARTÍNEZ T, et al. BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality[J]. Mathematische Zeitschrift, 2005, 249: 329-356.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构