1.白城医学高等专科学校药学系,吉林 白城137000
2.白城市传染病医院质量控制科,吉林 白城137000
3.白城师范学院理论计算中心,吉林 白城 137000
4.白城师范学院生命科学学院,吉林 白城137000
苏丹(1982年生)女;研究方向:药物化学;E-mail:1041968860@qq.com
丛建民(1974年生),男;研究方向:生物化学,E-mail:congjianmin@126.com
王佐成(1963年生),男;研究方向:计算化学;E-mail:wangzc188@163.com
纸质出版日期:2021-07-25,
网络出版日期:2020-10-29,
收稿日期:2020-04-29,
录用日期:2020-05-19
扫 描 看 全 文
苏丹,孙玉锋,郝成欣等.水液相环境下α-丙氨酸二价锌配合物的手性转变机理[J].中山大学学报(自然科学版),2021,60(04):50-59.
SU Dan,SUN Yufeng,HAO Chengxin,et al.Chiral transition mechanism of α-alanine divalent zinc complex in water/liquid phase environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):50-59.
苏丹,孙玉锋,郝成欣等.水液相环境下α-丙氨酸二价锌配合物的手性转变机理[J].中山大学学报(自然科学版),2021,60(04):50-59. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C011.
SU Dan,SUN Yufeng,HAO Chengxin,et al.Chiral transition mechanism of α-alanine divalent zinc complex in water/liquid phase environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):50-59. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C011.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性
α
-丙氨酸二价锌(
α
-Ala·Zn
2+
)配合物的手性转变反应。主要考察了3个反应通道a、b和c,a通道是
α
-H以羰基O为桥迁移,b通道是
α
-H以Zn为桥迁移,c通道是
α
-H以氨基N为桥迁移。势能面研究表明,c通道的手性转变反应最具优势,决速步自由能垒是140.7 kJ·mol
-1
,来自
α
-H从
α
-C向氨基N迁移的过渡态;a通道的手性转变反应是第2优势通道,决速步自由能垒是159.9 kJ·mol
-1
,来自
α
-H从
α
-C向羰基O迁移的过渡态;b通道的手性转变反应为劣势通道,决速步自由能垒是194.2 kJ·mol
-1
,来自
α
-H从
α
-C向Zn迁移的过渡态。结果表明:水液相环境下的
α
-Ala·Zn
2+
可以较好地保持手性特征。
The chiral transition of amphoteric
α
-alanine divalent zinc (
α
-Ala·Zn
2+
) complexes was studied by using the M06 and MN15 method based on SMD model method of self-consistent reaction field theory in Water/Liquid Phase. Three reaction pathways a, b and c were investigated. In pathway a,
α
-H is transferred using carbonyl O atom as a bridge.
α
-H is transferred with Zn atom and amino N atom as bridges in pathway b and c, respectively. Potential energy surface studies indicate that the chiral transition reaction in pathway c has the most advantage. The free energy barrier which comes from the transition state of
α
-H transfers from
α
-C to amino N atom is 164.9 kJ·mol
-1
. The pathway a of the chiral transition reaction is the second dominant pathway. The free energy barrier which comes from the transition state of
α
-H transfers from
α
-C to Carbonyl O atom is 168.9 kJ·mol
-1
. The pathway b of the chiral transition reaction is the disadvantaged pathway. The free energy barrier which comes from the transition state of
α
-H transfers from
α
-C to Zn atom is 194.2 kJ·mol
-1
. The results show that
α
-Ala·Zn
2+
can maintain its chiral characteristics well in Water/Liquid Phase.
丙氨酸(α-alanine,α-Ala)锌离子手性转变密度泛函理论自洽反应场理论过渡态能垒
alaninezinc ionschiral transitiondensity functional theoryself-consistent reaction field theorytransition stateenergy barrier
WILKINS P C, WILKINS R G. Inorganic chemistry in biology[M]. Oxford: Oxford University Press, 1997.
ABRAMS M J, MURRER B A. Metal compounds in therapy and diagnosis[J]. Science, 1993, 261: 725-730.
YOSHIKAWA S, SHINZAWA-ITOH K, TSUKIHARA T. X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase[J]. Journal of Inorganic Biochemistry, 2000, 82(1/2/3/4): 1-7.
FISHER G H, D'ANIELLO A, VETREE A, et al. Free D-aspartate and D-alanine in normal and Alzheimer brain [J]. Brain Research Bulletin, 1991, 26(6): 983-985.
THOMPSON R J, BOUWER H G, PORTNOY D A, et al. Pathogenicity and immunogenicity of a listeria monocytogenes strain that requires D-alanine for growth[J]. Infection and Immunity, 1998, 66(8): 3552-3561.
ALVAREZ L, ESPAILLAT A, HERMOSO J A, et al. Peptidoglycan remodeling by the coordinated action of multispecific enzymes[J]. Microb Drug Resist, 2014, 20(3): 190-198.
王佐成,刘凤阁,吕洋,等. 孤立条件下α-丙氨酸分子手性转变机制的密度泛函理论[J]. 吉林大学学报(理学版), 2014, 52(4): 825-830.
WANG Z C, LIU F G, LÜ Y, et al. Chiral transformaition mechanism of α-alanine under isolated condition by density functional theory[J]. Journal of Jilin University (Science Edition), 2014, 52(4): 825-830.
王佐成,高峰,赵衍辉,等. α-丙氨酸分子手性转变反应通道及水分子作用的理论研究[J]. 浙江大学学报(理学版), 2015, 42 (2): 189-197.
WANG Z C,GAO F, ZHAO Y H, et al. Theoretical research on the chiral transformation pathway of α-alanine and effect of water molecules [J]. Journal of Zhejiang University(Science Edition), 2015, 42(2): 189-197.
李忠,佟华,杨晓翠,等. 基于氨基作H转移桥梁单体α-丙氨酸的手性转变机理[J]. 复旦学报(自然科学版),2015, 54(5): 642-647.
LI Z, TONG H, YANG X C, et al. The Chiral transition mechanism of monomer α-alanine based on amino as H transfer bridge [J]. Journal of Fudan University (Natural Sciences), 2015, 54(5): 102-108.
田子德,高峰,杨晓翠,等. 具有氨基和羧基间单氢键的α-Ala分子旋光异构机理及水和羟自由基的作用[J]. 复旦学报(自然科学版), 2018, 57(4): 517-526+534.
TIAN Z D, GAO F, YANG X C, et al. Mechanism of optical isomerism of α-Ala molecules with hydrogen bonds between amino and carboxyl groups and roles of water and hydroxyl radicals[J]. Journal of Fudan University (Natural Sciences), 2018, 57(4): 517-526+534.
杨晓翠,高峰,佟华,等.水液相环境下α-丙氨酸分子的手性转变及氢氧根和羟基自由基的作用[J].武汉大学学报(理学版), 2019, 65(1):19-29.
YANG X C, GAO F, TONG H, et al. Optical isomerization of α-alanine molecules and roles of hydroxyl ions and hydroxyl radicals in water liquid phase environment[J]. Journal of Wuhan University(Science Edition) , 2019, 65(1):19-29.
徐锐英,马宏源,姜春旭,等.水液相环境 α-丙氨酸两性离子的手性对映体转变机理[J].中山大学学报(自然科学版),2019,58(6):25-34.
XU R Y, MA H Y, JIANG C X, et al.Mechanism of chiral enantiomer transition of α-alanine zwitterion in water/liquid phase environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019,58(6):25-34.
TONG H, LIU Y F, YAN H Y, et al. Theoretical investigations of the chiral transition of serine and the role of water, hydroxyl radical and hydroxide ion[J]. New Journal of Chemistry, 2019,43:12340-12350.
WANG Z C, LIU Y F, YAN H Y, et al.Theoretical investigations of the chiral transition of α-amino acid confined in various sized armchair boron-nitride nanotubes [J].The Journal of Physical Chemistry A,2017, 121(8): 1833-1840.
董丽荣,高峰,佟华,等.水环境下限域在MOR分子筛内的α-丙氨酸在羟自由基作用下的旋光异构及损伤[J].中山大学学报(自然科学版),2019,58(4):78-89.
DONG L R, GAO F, TONG H, et al. Optical isomerism and damage of α-alanine confined in MOR zeolite induced by hydroxyl radicals in water environment [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(4): 78-89.
李冰,潘宇,徐锐英,等.气相环境下Cu2+催化α-Ala手性对映体转变的机理[J].武汉大学学报(理学版), 2019, 65(6): 621-628.
LI B, PAN Y, XV R Y, et al. Mechanism of chiral enantiomer transition of α-Ala catalyzed by Cu2+ in gas phase environment[J]. Journal of Wuhan University(Science Edition), 2019, 65(6): 621-628.
刘芳,马宏源,潘宇,等.气相环境下K+催化丙氨酸分子手性对映体转变的机理[J]. 厦门大学学报(自然科学版), 2020, 59(6): 897-903.
LIU F, MA H Y, PAN Y, et al. Mechanism of alanine chiral enantiomer transition catalyzed by K+ in gas phase[J]. Journal of Xiamen University (Natural Sciences), 2020, 59(6): 897-903.
徐锐英,刘 芳,马宏源,等. 气相丙氨酸Ca2+配合物的手性转变机理[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641.
XÜ R Y, LIU F, MA H Y, et al. Chiral transition mechanism of Ala and Ca2+ complexes in gas phase[J]. Journal of Zhejiang University(Science Edition), 2020, 47(5): 630-641.
车立新,张雪娇,刘芳,等.气相α-丙氨酸二价锌配合物手性转变的密度泛函理论研究[J].云南大学学报(自然科学版),2020,42(5):910-921.
CHE L X, ZHANG X J, LIU F, et al. Chiral Transition Mechanism of Zn(Ⅱ) and α-Ala Complexes In Gas Phase: A Density Functional Theory Study[J]. Journal of Yunnan University (Natural Sciences), 2020,42(5):910-921.
REMKO M, RODE B M. Effect of Metal Ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and Water Coordination on the Structure of Glycine and Zwitterionic Glycine[J]. J Phys Chem A,2006, 110(5): 1960-1967.
AI H Q, BU Y X, HAN K L. Glycine-Zn+/Zn2+ and their hydrates: on the number of water molecules necessary to stabilize the switterionic glycine-Zn+/Zn2+ over the non-zwitterionic ones[J]. J Chem A, 2003, 118(24): 10973-10985.
孟祥军. Zn2+诱导甘氨酸α-H和羧基H迁移的机理[J].厦门大学学报(自然科学版), 2013, 52(4): 512-519.
MENG X J. α-H transfer and carboxyl H transfer mechanism of glycine induced by Zn2+[J]. Journal of Xiamen University (Natural Sciences), 2013, 52(4): 512-519.
WANG Y, VERMA P, ZHANG L, et al. M06-SX screened-exchange density functional for chemistry and solid-state physics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2294-2301.
WANG Y, VERMA P, JIN X, et al. Revised M06 density functional for main-group and transition-metal chemistry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10257-10262.
ALEKSANDR V, MARENICE C J, CRAMER, et al. Universal slovation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions [J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions [J]. The Journal of Chemical Physics, 1979, 70(4): 1593-1598.
HRATCHIAN H P, SCHLEGEL H B. Using hessian updating toincrease the efficiency of a hessian based predictor-corrector reaction path following method[J]. Journal of Chemical Theory and Computation, 2005, 1: 61-69.
ZHANG S C, POZO J, ROMITI, et al. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH2-amines [J]. Science, 2019, 364: 45-51.
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 revision C.01[CP]. Pittsburgh USA: Gaussian, Inc, 2019.
GORB L,LESZCZYNSKI J. Intramolecular proton transfer in mono- and dihydrated tautomers of guanine: an ab initio post hartree-fock study[J]. Journal of the American Chemical Society, 1998, 120: 5024-5032.
0
浏览量
0
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构