中山大学药学院,广东 广州 510006
汤卓雅(1997年生),女;研究方向:天然药物化学;E-mail: 3100914802@qq.com
唐贵华(1983年生),男;研究方向:天然药物化学;E-mail: tanggh5@mail.sysu.edu.cn
纸质出版日期:2021-05-25,
网络出版日期:2020-10-28,
收稿日期:2020-03-21,
录用日期:2020-05-16
扫 描 看 全 文
汤卓雅,潘月华,邹明锋等.深绿卷柏中木脂素成分及10个木脂素结构的修订[J].中山大学学报(自然科学版),2021,60(03):19-29.
TANG Zhuoya,PAN Yuehua,ZOU Mingfeng,et al.Lignans from Selaginella doederleinii and revision of structures of ten lignans[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):19-29.
汤卓雅,潘月华,邹明锋等.深绿卷柏中木脂素成分及10个木脂素结构的修订[J].中山大学学报(自然科学版),2021,60(03):19-29. DOI: 10.13471/j.cnki.acta.snus.2020.03.21.2020C007.
TANG Zhuoya,PAN Yuehua,ZOU Mingfeng,et al.Lignans from Selaginella doederleinii and revision of structures of ten lignans[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):19-29. DOI: 10.13471/j.cnki.acta.snus.2020.03.21.2020C007.
从传统中药深绿卷柏(
Selaginella doederleinii
)中分离得到5个已知的木脂素,并利用高分辨质谱及1D和2D NMR数据确定了其结构分别为3个8
4′-氧新木脂素类 [ (-)-赤式-(7′
E
)-4
9-二羟基-3
3′
5′-三甲氧基-8
4′-氧新木脂素-7′-烯-9′-醛 (
1
)、(-)-赤式-愈创木基甘油-
β
-
O
-4′-丁香树脂酚醚 (
2
) 和 (7′
E
)-3
5
3′
5′-四甲氧基-8
4′-氧新木脂素-7′-烯-4
9
9′-三醇 (
3
) ] ,1个苯骈呋喃类 [(+)-(7
R
8
S
)-5-甲氧二氢去氢二松柏醇 (
4
) ] 和1个双四氢呋喃类 [ 丁香脂素 (
5
) ] 。硫氧还蛋白氧化还原酶抑制活性评价显示3个化合物具有中等强度活性,其IC
50
值为10.1~20.2 μmol/L。化合物
1
~
4
是首次分离自该植物。另外,发现10个已知木脂素 [ 2
6
2′
6′-四甲氧基-4
4′-二(1-羟基-2
3-环氧丙基) 联苯 (
I
)、2
2′-二甲氧基-4
4′-二 (1-羟基-2
3-环氧丙基) 联苯 (
Ⅱ
)、2-羟基-3
2′
6′-三甲氧基-4′-(1-羟基-2
3-环氧丙基) -5-(3-羟基丙烯基) 联苯 (
Ⅲ
)、2-羟基-3
2′-二甲氧基-4′-(1-羟基-2
3-环氧丙基)-5-(3-羟基丙烯基) 联苯 (
Ⅳ
)、2
2′-二甲氧基-4-(3-羟基丙烯基)-4′-(1
2
3-三羟丙基) 二苯醚 (
Ⅴ
和
Ⅵ
)、(7′
R
8′
R
)-2
2'-二甲氧基-4-(3-羟丙烯基)-4′-(1
2
3-三羟丙基) 二苯醚 (
Ⅶ
)、野花椒乙素 (
Ⅷ
)、地黄新木甲素 (
Ⅸ
) 和地黄新木乙素 (
Ⅹ
) ] 的结构因解析不正确而误定为联苯新木脂素类和4
4′-氧新木脂素类。经过与模型化合物如一些报道的合成物及分离到的化合物(
1
~
5
)进行NMR数据对比分析后将化合物
Ⅰ
~
Ⅹ
的结构分别修订为(+)-丁香脂素(
5
)、(+)-松脂素(
6
)、(-)-simulanol(
7
)、(-)-去氢二松柏醇 (
8
)、(-)-苏式-愈创木基甘油-
β
-
O
-4′-松柏醇醚(
9
)、(+)-赤式-愈创木基甘油-
β
-
O
-4′-松柏醇醚 (
10a
)、(-)-赤式-愈创木基甘油-
β
-
O
-4′-松柏醇醚(
10b
)、(+)-苏式-愈创木基甘油-
β
-
O
-4′-丁香树脂酚醚 (
11
)、(-)-苏式-4-
O
-[1-羟甲基-2-羟基-2-(3-甲氧基-4-羟苯基) 乙基]阿魏酸甲酯(
12
)和(+)-赤式-4-
O
-[1-羟甲基-2-羟基-2-(3-甲氧基-4-羟苯基) 乙基]阿魏酸甲酯 (
13
) 。因此,尚无证据表明自然界中存在这10种木脂素,实际上其修正后的结构分别属于双四氢呋喃类
苯骈呋喃类及8
4′-氧新木脂素类等类型。
Five known lignans including three 8,4′-oxyneolignans [(-)-
erythro
-(7′
E
)-4,9-dihydroxy-3,3′,5′-trimethoxy-8,4′-oxyneolign-7′-en-9′-al (
1
), (-)-
erythro
-guaiacylglycerol-
β
-
O
-4′-sinapyl ether (
2
), and (7′
E
)-3,5,3′,5′-tetramethoxy-8,4′-oxyneolign-7′-ene-4,9,9′-triol (
3
)], a benzofuran [(+)-(7
R
,8
S
)-5-methoxydihydrodehydrodiconiferyl alcohol (
4
)], and one furofuran [syringaresinol (
5
)] were isolated from the traditional Chinese medicine
Selaginella doederleinii
. Their structures were elucidated by HRMS and 1D and 2D NMR data. The inhibitory activities of
1
-
5
against thioredoxin reductase (TrxR) were evaluated, and three compounds showed moderate activities with IC
50
values ranging from 10.1 to 20.2 μmol/L. Compounds
1
-
4
were isolated from
S. doederleinii
for the first time. In addition, it was found that the structures of ten known lignans [2,6,2′,6′-tetramethoxy-4,4′-bis(2,3-epoxy-1-hydroxypropyl)biphenyl (
Ⅰ
), griffilignan A (
Ⅱ
), 2-hydroxy-3,2′,6′-trimethoxy-4′-(2,3-epoxy-1-hydroxypropyl)-5-(3-hydroxy-l-propenyl)biphenyl (
Ⅲ
), 2-hydroxy-3,2′-dimethoxy-4′-(2,3-epoxy-1-hydroxypropyl)-5-(3-hydroxy-1-propenyl)biphenyl (
Ⅳ
), 2,2′-dimethoxy-4-(3-hydroxy-l-propenyl)-4′-(1,2,3-trihydroxypropyl)diphenyl ethers (
Ⅴ
and
Ⅵ
), (7΄
R
,8΄
R
)-2,2′-dimethoxy-4-(3-hydroxyl-propenyl)-4′-(1,2,3-trihydroxypropyl)biphenyl ether (
Ⅶ
), utiline B (
Ⅷ
), and rhemaneolignans A and B (Ⅸ and
Ⅹ
)] were erroneously identified as the types of biphenylneolignans and 4,4′-oxyneolignans due to incorrect elucidation. By comparison of their NMR data with those of model compounds such as some reported synthetic products and the isolates (
1
-
5
), the structures of
Ⅰ
-
Ⅹ
were revised as (+)-syringaresinol (
5
), (+)-pinoresinol (
6
), (-)-simulanol (
7
), (-)-dehydrodiconiferyl alcohol (
8
), (-)-
threo
-guaiacylglycerol-
β
-
O
-4′-coniferyl ether (
9
), (+)-
erythro
-guaiacylglycerol-
β
-
O
-4′-coniferyl ether (
10a
), (-)-
erythro
-guaiacylglycerol-
β
-
O
-4′-coniferyl ether (
10b
), (+)-
threo
-guaiacylglycerol-
β
-
O
-4′-sinapyl ether (
11
), (-)-
threo
-methyl 4-
O
-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethyl]ferulate (
12
), and (+)-
erythro
-methyl 4-
O
-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethyl]ferulate (
13
), respectively. So, it noteworthy that there is no evidence for the existence of the ten lignans in nature, and their revised structures are actually represented as the types of furofurans, benzofurans, and 8,4′-oxyneolignans, respectively.
卷柏科(Selaginellaceae)深绿卷柏(Selaginella doederleinii)木脂素联苯新木脂素结构修订
SelaginellaceaeSelaginella doederleiniilignanbiphenylneolignanstructural revision
ZHANG X C, NOOTEBOOM H P, KATO M. Selaginellaceaein[M]// WU Z Y, RAVEN P H, HONG D Y, et al. Flora of China (Pteridophytes) (Vol.2/3)[M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2013: 37-66.
Editorial Committee of Chinese Bencao. Chinese materia medica (Zhonghua Bencao) (Vol.12) [M]. Shanghai: Shanghai Science and Technology Press, 1999: 44-45.
LI S, HUANG K L. Study advances on Selaginella doederleinii[J]. Lishizhen Medicine and Materia Medica Research, 2010, 21 (10): 2637-2639.
CHAO L R, SEGUIN E, TILLEQUIN F, et al. New alkaloid glycosides from Selaginella doederleinii[J]. Journal of Natural Products, 1987, 50 (3): 422-426.
LIN R C, SKALTSOUNIS A L, SEGUIN E, et al. Phenolic constituents of Selaginella doederleinii[J]. Planta Medica, 1994, 60 (2): 168-170.
DENG Y H, WANG N N, ZOU Z X, et al. Multi-target screening and experimental validation of natural products from Selaginella plants against Alzheimer's disease[J]. Frontiers in Pharmacology, 2017, 8: 539.
ZOU Z X, XU K P, XU P S, et al. Seladoeflavones A-F, six novel flavonoids from Selaginella doederleinii[J]. Fitoterapia, 2017, 116: 66-71.
YAO W, LIN Z, SHI P, et al. Delicaflavone induces ROS-mediated apoptosis and inhibits PI3K/AKT/mTOR and Ras/MEK/Erk signaling pathways in colorectal cancer cells[J]. Biochemical Pharmacology, 2020, 171: 113680.
BAO J M, SU Z Y, LOU L L, et al. Jatrocurcadiones A and B: two novel diterpenoids with an unusual 10,11-seco-premyrsinane skeleton from Jatropha curcas[J]. RSC Advances, 2015, 5 (77): 62921-62925.
ZHU J Y, LOU L L, GUO Y Q, et al. Natural thioredoxin reductase inhibitors from Jatropha integerrima[J]. RSC Advances, 2015, 5 (58): 47235-47243.
SU Y, BI J L, WANG Y H, et al. Chemical constituents from Chirita longgangensis var. hongyao with inhibitory activity against porcine respiratory and reproductive syndrome virus[J]. Journal of the Brazilian Chemical Society, 2012, 23 (10): 1925-1932.
LOURITH N, KATAYAMA T, SUZUKI T. Stereochemistry and biosynthesis of 8-O-4΄ neolignans in Eucommia ulmoides: diastereoselective formation of guaiacylglycerol-8-O-4΄-(sinapyl alcohol) ether[J]. Journal of Wood Science, 2005, 51 (4): 370-378.
MACHIDA K, SAKAMOTO S, KIKUCHI M. Structure elucidation and NMR spectral assignments of four neolignan glycosides with enantiometric aglycones from Osmanthus ilicifolius[J]. Magnetic Resonance in Chemistry, 2008, 46 (10): 990-994.
WU B, WANG J. Phenolic compounds from Selaginella moellendorfii[J]. Chemistry & Biodiversity, 2011, 8 (9): 1735-1747.
CHIN Y W, CHAI H B, KELLER W J, et al. Lignans and other constituents of the fruits of Euterpe oleracea (Açai) with antioxidant and cytoprotective activities[J]. Journal of Agricultural and Food Chemistry, 2008, 56 (17): 7759-7764.
YANG M C, LEE K H, KIM K H, et al. Lignan and terpene constituents from the aerial parts of Saussurea pulchella[J]. Archives of Pharmacal Research, 2007, 30 (9): 1067-1074.
DAY S H, WANG J P, WON S J, et al. Bioactive constituents of the roots of Cynanchum atratum[J]. Journal of Natural Products, 2001, 64 (5): 608-611.
TANG H, PEI H Y, WANG T J, et al. Flavonoids and biphenylneolignans with anti-inflammatory activity from the stems of Millettia griffithii[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26 (18): 4417-4422.
MORITA H, KISHI E, TAKEYA K, et al. Biphenylneolignans from wood of Eurycoma longifolia[J]. Phytochemistry, 1992, 31 (11): 3993-3995.
ZHU D, ZHU D, CHEN Y, et al. Two new phenylpropanoids from Zanthoxylum utile Huang[J]. Chinese Journal of Organic Chemistry, 2013, 33 (6): 1345-1348.
LI M, WANG X, ZHENG X, et al. A new ionone glycoside and three new rhemaneolignans from the roots of Rehmannia glutinos[J]. Molecules, 2015, 20 (8): 15192-15201.
McDONALD B R, NIBBS A E, SCHEIDT K A. A biomimetic strategy to access the silybins: total synthesis of (-)-isosilybin A[J]. Organic Letters, 2015, 17 (1): 98-101.
YEO H, CHIN Y W, PARK S Y, et al. Lignans of Rosa multiflora roots[J]. Archives of Pharmacal Research, 2004, 27 (3): 287-290.
ZHU J X, REN J, QIN J J, et al. Phenylpropanoids and lignanoids from Euonymus acanthocarpus[J]. Archives of Pharmacal Research, 2012, 35 (10): 1739-1747.
FERNANDES R A, KATTANGURU P. Tandem benzylic oxidation/dihydroxylation of α-vinyl- and α-alkenylbenzyl alcohols[J]. Helvetica Chimica Acta, 2015, 98 (1): 92-107.
VERMES B, SELIGMANN O, WAGNER H. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono- and bis-glucosides[J]. Phytochemistry, 1991, 30 (9): 3087-3089.
MIN Y D, CHOI S U, LEE K R. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum[J]. Archives of Pharmacal Research, 2006, 29 (8): 627-632.
DEYAMA T, IKAWA T, KITAGAWA S, et al. The constituents of Eucommia ulmoides OLIV. V. Isolation of dihydroxydehydrodiconiferyl alcohol isomers and phenolic compounds[J]. Chemical & Pharmaceutical Bulletin, 1987, 35 (5): 1785-1789.
XIE L H, AKAO T, HAMASAKI K, et al. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol[J]. Chemical & Pharmaceutical Bulletin, 2003, 51 (5): 508-515.
YANG Y P, CHENG M J, TENG C M, et al. Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans[J]. Phytochemistry, 2002, 61 (5): 567-572.
LI S, LUNDQUIST K, WALLIS A F A. Revised structure for a neolignan from Brucea javanica[J]. Phytochemistry, 1998, 49 (7): 2125-2128.
HAN H Y, WANG X H, WANG N L, et al. Lignans isolated from Campylotropis hirtella (Franch.) Schindl. decreased prostate specific antigen and androgen receptor expression in LNCaP cells[J]. Journal of Agricultural and Food Chemistry, 2008, 56 (16): 6928-6935.
HELM R F, RALPH J. Lignin-hydroxycinnamyl model compounds related to forage cell wall structure. 1. Ether-linked structures[J]. Journal of Agricultural and Food Chemistry, 1992, 40 (11): 2167-2175.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构