1.四川大学数学学院,四川 成都 610064
2.重庆理工大学理学院,重庆 400054
3.托莱多大学数学与统计系,美国俄亥俄州托莱多 43606
4.首都师范大学北京成像理论与技术高精尖创新中心,北京 100048
陈小俊(1976年生),男;研究方向:非交换几何、代数拓扑与数学物理;E-mail:xjchen@scu.edu.cn。陈小俊,男,四川大学数学科学学院教授。2007年于美国纽约州立大学Stony Brook分校获博士学位。2007年9月~2011年6月,在美国密歇根大学Ann Arbor分校从事博士后研究。2012年1~8月访问德国Max Planck数学研究所。研究方向为弦拓扑与非交换代数几何。主持国家自然科学基金面上项目两项,参加自然科学基金重大项目1项。其构造出的Fukaya范畴上的李双代数、一类非交换空间上的非交换Poisson结构等工作得到Wolf奖得主Sullivan等人的好评。曾入选四川省“百人计划”青年项目。
陈友明(1985年生),男;研究方向:微分几何与数学物理;E-mail:youmingchen@cqut.edu.cn
纸质出版日期:2020-09-25,
收稿日期:2020-03-04,
扫 描 看 全 文
陈小俊,陈友明.卡拉比-丘代数的导出表示概型与平移泊松结构[J].中山大学学报(自然科学版),2020,59(05):1-18.
CHEN Xiaojun,CHEN Youming.The shifted Poisson structure on derived representation schemes of Koszul Calabi-Yau algebras[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):1-18.
陈小俊,陈友明.卡拉比-丘代数的导出表示概型与平移泊松结构[J].中山大学学报(自然科学版),2020,59(05):1-18. DOI: 10.13471/j.cnki.acta.snus.2020.03.04.2020A009.
CHEN Xiaojun,CHEN Youming.The shifted Poisson structure on derived representation schemes of Koszul Calabi-Yau algebras[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):1-18. DOI: 10.13471/j.cnki.acta.snus.2020.03.04.2020A009.
导出非交换代数几何是目前数学领域最活跃的分支之一。撷取近年来人们在这一领域里的几个结果向读者作简单介绍,内容侧重于介绍导出的非交换辛结构、非交换泊松结构,以及它们与卡拉比-丘代数和卡拉比-丘范畴之间的关系。
Derived noncommutative algebraic geometry is one of the most active research fields in mathematics.Several important results that mathematicians have obtained in this field are reviewed,with an emphasis on the derived noncommutative symplectic structure,noncommutative Poisson structure,and their relationships with Calabi-Yau algebras and Calabi-Yau categories.
导出非交换几何非交换泊松结构非交换辛结构卡拉比-丘范畴
derived noncommutative geometrynoncommutative Poisson structurenoncommutative symplectic structureCalabi-Yau category
KONTSEVICH M,ROSENBERG A.Noncommutative smooth spaces [C]//Gelfand Mathematical Seminars 2000,2000:85-108.
CRAWLEY-BOEVEY W.Poisson structures on moduli spaces of representations [J].Journal of Algebra,2011,325: 205-215.
BERGH MVAN DEN.Double Poisson algebras [J].Trans Amer Math Soc, 2008, 360: 5711-5769.
CRAWLEY-BOEVEY W,ETINGOF P,GINZBURG V.Noncommutative geometry and quiver algebras [J].Adv Math,2007, 209(1): 274-336.
BEREST Y,KHACHATRYAN G,RAMADOSS A.Derived representation schemes and cyclic homology [J].Adv Math, 2013,245: 625-689.
BEREST Y,FELDER G,RAMADOSS A.Derived representation schemes and noncommutative geometry [C]//Contemp Math,2014,607: 113-162.
TOËN B,VAQUIE M. Moduli of objects in dg-categories [J].Ann Sci Éc Norm Sup,2007,40(3): 387-444.
FARKAS D, LETZTER G.Ring theory from symplectic geometry [J].J Pure Appl Algebra,1998,125: 155-190.
BLOCK J, GETZLER E.Quantization of foliations [C]// Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol.1,2,New York,1991.River Edge,NJ:World Sci Publishing,1992: 471-487.
XU P.Noncommutative Poisson algebras [J].Amer J Math,1994,116: 101-125.
PROCESI C. Rings with Polynomial Identities [M].New York: Marcel Dekker, 1973.
ARDIZZONI A, GALLUZZI F, VACCARINO F.A new family of algebras whose representation schemes are smooth [J].Ann Inst Fourier (Grenoble),2016,66(3): 1261-1277.
CUNTZ J, QUILLEN D. Cyclic homology and nonsingularity [J].J Amer Math Soc,1995,8(2): 373-442.
HARRISON D. Commutative algebras and cohomology [J].Trans Amer Math Soc,1962,104: 191-204.
Van den BERGH M. Non-commutative quasi-Hamiltonian spaces [C]//Poisson geometry in mathematics and physics,273-299,Contemp Math 450, Amer Math Soc, Providence,RI,2008.
LODAY J.Cyclic homology [M].2nd ed.Berlin: Springer-Verlag,1998.
FEIGIN B,TSYGAN B.Additive K-theory and crystalline cohomology [J].Funct Anal Appl,1985,19(2): 124-132.
BEREST Y,CHEN X,ESHMATOV A, et al.Noncommutative Poisson structures, derived representation schemes and Calabi-Yau algebras [C]//Contemp Math,2012,583: 219-246.
CALAQUE D,PANTEV T,TOËN B,et al.Shifted Poisson structures and deformation quantization [J].J Topol,2017,10(2): 483-584.
CHEN X,ESHMATOV A,ESHMATOV F,et al.The derived non-commutative Poisson bracket on Koszul Calabi-Yau algebras [J].J Noncommut Geom,2017,11(1): 111-160.
CHEN X, ESHMATOV F.Calabi-Yau algebras and the shifted noncommutative symplectic structure [J].Adv Math,2020, 367:107-126.
PANTEV T,TOËN B,VAQUIÉ M,et al.Shifted symplectic structures [J].Publ Math Inst Hautes Etudes Sci,2013,117: 271-328.
YEUNG W.Pre-Calabi-Yau structures and moduli of representations [J].ArXiv,2018.[arXiv:1802.05398]
GINZBURG V. Calabi-Yau algebras [J].ArXiv,2006.[arXiv:math/0612139]
REYES M,ROGALSKI D,ZHANG J.Skew Calabi-Yau algebras and Homological identities [J].Adv Math,2014,264: 308-354.
BRIDGELAND T,KING A,REID M.The McKay correspondence as an equivalence of derived categories [J].J Amer Math Soc,2001,14(3): 535-554.
Van den BERGH M.Non-commutative crepant resolutions [M].The Legacy of Niels Henrik Abel (Berlin),Berlin: Springer, 2004: 749-770.
KELLER B. Deformed Calabi-Yau completions [J].J Reine Angew Math,2011,654: 125-180.
BROOMHEAD N.Dimer models and Calabi-Yau algebras [J].Mem Amer Math Soc,2012,215(1011): viii+86.
DAVISON B.Superpotential algebras and manifolds [J].Adv Math,2012,231: 879-912.
KONTSEVICH M.Homological algebra of Mirror Symmetry [J].Proceedings of the International Congress of Mathematicians, Zürich 1994,(vol. I).Birkhäuser:1995:120-139.
COSTELLO K. Topological conformal field theories and Calabi-Yau categories [J].Adv Math,2007,210(1):165-214.
KONTSEVICH M, SOIBELMAN Y. Notes on <math id="M405"><msub><mrow><mi>A</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496275&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496272&type=3.301999813.21733332-algebras,<math id="M406"><msub><mrow><mi>A</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496303&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496277&type=3.301999813.21733332-categories and non-commutative geometry [C]// Homological Mirror Symmetry,Lecture Notes in Phys 757.Berlin: Springer, 2009:153-219.
HUYBRECHTS D.Fourier-Mukai Transforms In Algebraic Geometry [M].Oxford Mathematical Monographs,Oxford: Oxford University Press,(2006):viii+307.
FUKAYA K,OH Y,OHTA H,et al.Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I and II [M]//AMS/IP Studies in Advanced Mathematics,(Vol 46),2009.
SEIDEL P.Fukaya categories and Picard-Lefschetz theory [M]// Zürich Lectures in Advanced Mathematics,Zürich: European Mathematical Society (EMS),2008.
KELLER B.Calabi-Yau triangulated categories [M].Trends in representation theory of algebras and related topics, EMS Ser Congr Rep,Zürich: European Mathematical Society,2008:467-489.
BRAV C, DYCKERHOFF T.Relative Calabi-Yau structures [J].Compos Math,2019,155(2): 372-412.
CHEN X,HER H,SUN S,et al.A double Poisson algebra structure on Fukaya categories [J].J Geom Phys,2015,98: 57-76.
LU D,PALMIERI J,WU Q,et al.<math id="M407"><msub><mrow><mi>A</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496313&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49496305&type=3.301999813.21733332structure on Ext-algebras [J].J Pure Appl Algebra,2009,213: 2017-2037.
Van den BERGH M.Calabi-Yau algebras and superpotentials [J].Selecta Math (N.S.),2015,21(2): 555-603.
BEREST Y,RAMADOSS A,ZHANG Y.Hodge decomposition of string topology [J].arXiv,2002.[arXiv:2002.06596v2].
BEREST Y,FELDER G,PATOTSKI A, et al.Lie algebra cohomology and the derived Harish-Chandra homomorphism [J].J Eur Math Soc,2017,19: 2811-2893.
RAMADOSS A,ZHANG Y.Cyclic pairings and derived Poisson structures [J].New York J Math,2019,25: 1-44.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构