1.中山大学药学院,广东 广州 510006
2.济南大学生物科学与技术学院,山东 济南 250022
汤卓雅(1997年生),女;研究方向:天然药物化学;E-mail: 3100914802@qq.com
潘月华(1996年生),女;研究方向:生物活性评价;E-mail: pyh13120@163.com
唐贵华(1983年生),男;研究方向:天然药物化学;E-mail: tanggh5@mail.sysu.edu.cn
纸质出版日期:2020-11-25,
收稿日期:2020-02-27,
扫 描 看 全 文
汤卓雅,潘月华,张君生等.山竹果皮中异戊烯基双苯吡酮类成分[J].中山大学学报(自然科学版),2020,59(06):21-32.
TANG Zhuoya,PAN Yuehua,ZHANG Junsheng,et al.Prenylated xanthones from the pericarps of Garcinia mangostana[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):21-32.
汤卓雅,潘月华,张君生等.山竹果皮中异戊烯基双苯吡酮类成分[J].中山大学学报(自然科学版),2020,59(06):21-32. DOI: 10.13471/j.cnki.acta.snus.2020.02.27.2020C005.
TANG Zhuoya,PAN Yuehua,ZHANG Junsheng,et al.Prenylated xanthones from the pericarps of Garcinia mangostana[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):21-32. DOI: 10.13471/j.cnki.acta.snus.2020.02.27.2020C005.
从山竹(
Garcinia mangostana
)的果皮中分离得到22个双苯吡酮类化合物,经波谱数据分析分别鉴定为:1,3,7-三羟基𠮿
酮(
1
)、1,3,6,7-四羟基-8-异戊烯基𠮿
酮(
2
)、1,3,5-三羟基-4-异戊烯基𠮿
酮(
3
)、8-deoxygartanin(
4
)、cudraxanthone G(
5
)、gartanin(
6
)、6-脱氧-
γ
-倒捻子素(
7
)、
γ
-倒捻子素(
8
)、
α
-倒捻子素(
9
)、1,3-二羟基-6,7-二甲氧基-2,8-二异戊烯基𠮿
酮(
10
)、
β
-倒捻子素(
11
)、garcinone D(
12
)、garcinone B(
13
)、mangostenone D(
14
)、3-
O
-methylmangostenone D(
15
)、9-hydroxycalabaxanthone(
16
)、11-羟基-1-异倒捻子素(
17
)、brasilixanthone B(
18
)、garcimangosxanthone D(
19
)、BR-xanthone A(
20
)、tovophyllin A(
21
)和1,3,6-trihydroxy-2,5-bis(3-methylbut-2-enyl)-6',6'-dimethyl-4',5'-dihydropyrano[2,3':7,8]xanthone(
22
)。其中化合物
2
~
22
为异戊烯基双苯吡酮类,且化合物
3
和
15
属首次从山竹中分离。在小鼠海马神经元HT22细胞上测试了所有化合物对谷氨酸诱导的细胞死亡的保护活性。
Phytochemical investigation on the pericarps of
Garcinia mangostana
resulted in the isolation of 22 xanthones. On the basis of the spectroscopic data, the structures of these known compounds were identified as 1,3,7-trihydroxyxanthone (
1
), 1,3,6,7-tetrahydroxy-8-prenylxanthone (
2
), 1,3,5-trihydroxy-4-prenylxanthone (
3
), 8-deoxygartanin (
4
), cudraxanthone G (
5
), gartanin (
6
), 6-deoxy-
γ
-mangostin (
7
),
γ
-mangostin (
8
),
α
-mangostin (
9
), 1,3-dihydroxy-6,7-dimethoxy-2,8-diprenylxanthone (
10
),
β
-mangostin (
11
), garcinone D (
12
), garcinone B (
13
), mangostenone D (
14
), 3-
O
-methylmangostenone D (
15
), 9-hydroxycalabaxanthone (
16
), 11-hydroxy-1-isomangostin (
17
), brasilixanthone B (
18
), garcimangosxanthone D (
19
), BR-xanthone A (
20
), tovophyllin A (
21
), and 1,3,6-trihydroxy-2,5-bis(3-methylbut-2-enyl)-6',6'-dimethyl-4',5'-dihydropyrano[2,3':7,8]xanthone (
22
). Compounds
2
-
22
were prenylated xanthones, and
3
and
15
were isolated from this plant for the first time. The neuroprotective effects of all compounds against glutamate-induced cell death were tested in murine hippocampal neuronal cell line HT22.
藤黄科(Guttiferae)山竹(Garcinia mangostana)异戊烯基双苯吡酮神经保护活性
GuttiferaeGarcinia mangostanaprenylated xanthonesneuroprotective activity
UTTARA B, SINGH A V, ZAMBONI P, et al. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options[J]. Current Neuropharmacology, 2009, 7 (1): 65-74.
SPAGNUOLO C, NAPOLITANO M, TEDESCO I, et al. Neuroprotective role of natural polyphenols[J]. Current Topics in Medicinal Chemistry, 2016, 16 (17): 1943-1950.
ÂBISOL, de CAMPOS P S, LAMERS M L. Flavonoids as anticancer therapies: A systematic review of clinical trials[J]. Phytotherapy Research, 2020, 34 (3): 568-582.
MAHER P. The potential of flavonoids for the treatment of neurodegenerative diseases[J]. International Journal of Molecular Sciences, 2019, 20 (12): 3056.
VAZHAPPILLY C G, ANSARI S A, AL-JALEELI R, et al. Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases[J]. Inflammopharmacology, 2019, 27 (5): 863-869.
LI X, LI J, PETER F S. Flora of China[M]. Beijing: Science Press, 2007, 13: 40-47.
XI T L, LI X X, LIU B. Review on phytochemicals and pharmacological activities of the pericarp of Garcinia mangostana[J]. Natural Product Research and Development, 2018, 30 (5): 888-889.
WANG S N, LI Q, JING M,H, et al. Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer's disease[J]. Neurochemical Research, 2016, 41 (7): 1806-1817.
TANG G H, CHEN Z W, LIN T T, et al. Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 cells[J]. Journal of Natural Products, 2015, 78 (8): 1894-1903.
XIA C L, TANG G H, GUO Y Q, et al. Mulberry Diels-Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer's disease[J]. Phytochemistry, 2019, 157: 82-91.
WANG H, YE G, MA C H, et al. Identification and determination of four metabolites of mangiferin in rat urine[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45 (5): 793-798.
JIANG Y, LIU L, TU P F. Study on chemical constituents of Polygala tenuifolia III[J]. Chinese Journal of Natural Medicines, 2003, 1 (3): 15-18.
ISHIGURO K, NAKAJIMA M, FUKUMOTO H, et al. Co-occurrence of prenylated xanthones and their cyclization products in cell suspension cultures of Hypericum patulum[J]. Phytochemistry, 1995, 38: 867-869.
HELESBEUX J J, DUVAL O, DARTIGUELONGUE C, et al. Synthesis of 2-hydroxy-3-methylbut-3-enyl substituted coumarins and xanthones as natural products. Application of the Schenck ene reaction of singlet oxygen with ortho-prenylphenol precursors[J]. Tetrahedron, 2004, 60 (10): 2293-2300.
NGUYEN L H D, VO H T, PHAM H D, et al. Xanthones from the bark of Garcinia merguensis[J]. Phytochemistry, 2003, 63 (4): 467-470.
RYU H W, CURTIS-LONG M J, JUNG S, et al. Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 18 (17): 6258-6264.
ITO C, MIYAMOTO Y, RAO K S, et al. A novel dibenzofuran and two new xanthones from Calophyllum panciflorum[J]. Chemical & Pharmaceutical Bulletin, 1996, 44 (2): 441-443.
DHARMARATNE H R W, SOTHEESWARAN S, BALASUBRAMANIAM S, et al. Xanthones from roots of three Calophyllum species[J]. Phytochemistry, 1986, 25 (8): 1957-1959.
HA L D, HANSEN P E, VANG O, et al. Cytotoxic geranylated xanthones and O-alkylated derivatives of α-mangostin[J]. Chemical & Pharmaceutical Bulletin, 2009, 57 (8): 830-834.
PATTANAPRATEEB P, RUANGRUNGSI N, CORDELL G A. Cytotoxic constituents from Cratoxylum arborescens[J]. Planta Medica, 2005, 71 (2): 181-183.
SEN A K, SARKAR K K, MAZUMDER P C, et al. The structures of garcinones A, B, and C: three new xanthones from Garcinia mangostana[J]. Phytochemistry, 1982, 21 (7): 1747-1750.
SUKSAMRARN S, KOMUTIBAN O, RATANANUKUL P, et al. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana[J]. Chemical & Pharmaceutical Bulletin, 2006, 54 (3): 301-305.
NGUYEN H D, TRINH B T D, NGUYEN N K, et al. Xanthones from the twigs of Cratoxylum cochinchinense[J]. Phytochemistry Letters, 2011, 4 (1): 48-51.
HAN A R, KIM J A, LANTVIT D D, et al. Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (Mangosteen)[J]. Journal of Natural Products, 2009, 72 (11): 2028-2031.
CHENG H C, WANG L T, KHALIL A T, et al. Pyranoxanthones from Calophyllum inophyllum[J]. Journal of the Chinese Chemical Society, 2004, 51 (2): 431-435.
ZHOU X, HUANG R, HAO J, et al. Two new prenylated xanthones from the pericarp of Garcinia mangostana (Mangosteen)[J]. Helvetica Chimica Acta, 2011, 94 (11): 2092-2098.
BALASUBRAMANIAN K, RAJAGOPALAN K. Studies of indigenous medicinal plants. Part 1. Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B[J]. Phytochemistry, 1988, 27 (5): 1552-1554.
BENNETT G J, HARRISON L J, SIA G L, et al. Triterpenoids, tocotrienols and xanthones from the bark of Cratoxylum cochinchinense[J]. Phytochemistry, 1993, 32 (5): 1245-1251.
ZHAO Y, LIU J P, LU D, et al. A new antioxidant xanthone from the pericarp of Garcinia mangostana Linn[J]. Natural Product Research, 2010, 24 (17): 1664-1670.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构