延边大学理学院数学系,吉林 延吉133002
朴勇杰(1962年生),男;研究方向:非线性分析和不动点理论;E-mail:sxpyj@ybu.edu.cn
纸质出版日期:2021-07-25,
网络出版日期:2021-01-06,
收稿日期:2020-02-27,
录用日期:2020-09-18
扫 描 看 全 文
朴勇杰.非完备b-度量空间上四个非连续映射具有唯一公共不动点的定理[J].中山大学学报(自然科学版),2021,60(04):146-153.
PIAO Yongjie.Theorems on the unique common fixed point for four non-continuous self-mappings on non-complete b-metric spaces[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):146-153.
朴勇杰.非完备b-度量空间上四个非连续映射具有唯一公共不动点的定理[J].中山大学学报(自然科学版),2021,60(04):146-153. DOI: 10.13471/j.cnki.acta.snus.2020.02.27.2020A008.
PIAO Yongjie.Theorems on the unique common fixed point for four non-continuous self-mappings on non-complete b-metric spaces[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):146-153. DOI: 10.13471/j.cnki.acta.snus.2020.02.27.2020A008.
给出了在非完备的
b
-度量空间上满足
<math id="M2"><mi>ϕ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476440&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476439&type=
2.03200006
2.87866688
-隐式压缩条件或线性压缩条件的4个非连续的且满足弱相容条件的自映射具有唯一公共不动点的存在定理。所得结果推广和改进了许多相应的公共不动点定理。最后,给出实例支撑本文的主要结果。
Several unique common fixed point theorems for four non-continuous and weakly compatible self-mappings satisfying
<math id="M3"><mi>ϕ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476449&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476432&type=
2.37066650
3.38666677
-implicit contractive condition or linear contractive condition are given on non-complete
b
-metric space. The obtained results generalize and improve many corresponding common fixed point theorems. Finally, One of the main results is supported with a relevant example.
公共不动点弱相容b-度量空间<math id="M4"><mi>ϕ</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476440&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476439&type=2.032000062.87866688-隐式压缩
common fixed pointweakly compatible<math id="M5"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476513&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476523&type=1.693333392.62466669-metric space<math id="M6"><mi>ϕ</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476449&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49476432&type=2.370666503.38666677-implicit contraction
CZERWIK S. Contraction mappings in <math id="M402"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Acta Methematica et Informatica Universitiatis Ostraviensis, 1993, 1: 5-11.
AKKOUCHI M. Common fixed point theorems for two selfmappings of a <math id="M403"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric space under a implicit relation [J]. Hacettepe Journal of Mathematics and Statistics, 2011, 40(6): 805-810.
AYDI H, BOTA M, KARAPINAR E, et al. A fixed point theorem for set-valued quasi-contractions on <math id="M404"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Fixed Point Theory and Appl, 2012: 88.
BOTA M, MOLNAR A, VARGA C. On Ekeland's variational principle in <math id="M405"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Fixed Point Theory, 2011, 12(2): 21-28.
HUSSAIN N, DORIĆ D, KADELBURG Z, et al. Suzuki-type fixed point results in metric type spaces [J]. Fixed Point Theory and Appl, 2012: 126. DOI: 10.1186/1687-1812-2012-126http://dx.doi.org/10.1186/1687-1812-2012-126.
HUSSAIN N, SHAH M H. KKM mappings in cone <math id="M406"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Comput Math Appl, 2011, 62(4): 1677-1684.
JOVANOVIĆ M, KADELBURG Z, RADENOVIĆ S. Common fixed point results in metric type spaces [J]. Fixed Point Theory and Appl, 2010(1):1-15. DOI: 10.1155/2010/978121http://dx.doi.org/10.1155/2010/978121.
KHAMSI M A. Remarks on cone metric spaces and fixed point theorems for contractive mappings [J]. Fixed Point Theory and Appl, 2010: 315398.DOI: 10.1155/2010/315398http://dx.doi.org/10.1155/2010/315398.
CHEN C, DONG J, ZHU C. Some fixed point theorems in <math id="M407"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric-like spaces [J]. Fixed Point Theory and Appl,2015(1): 122.
SHAHKOOHI R J, RAZANI A. Some fixed point theorems for rational Geraghty contractive mappings in ordered <math id="M408"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Journal of Inequalities and Applications, 2014(1): 373.
ROSHAN J R, SHOBKOLAEI N, SEDGHI S, et al. Common fixed point four maps in <math id="M409"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Hacettepe Journal of Mathematics and Statistics, 2014, 43(4): 613-624.
CIRIĆ L B. A generalization of Banach's contraction principle [J]. Proceedings of the American Mathematical Society, 1974, 45: 267-273.
HARDY G E, ROGERS T D. A generalization of a fixed point theorem of Reich [J]. Canacian Mathematical Bulletin, 1973, 16: 201-206.
PREETI K, SANJAY K, KENAN T. A new class of contraction in <math id="M410"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces and applications [J]. Abstract and Applied Anal, 2017: 1-10.
BORICEANU M, BOTA M, PETRUSEL A. Multivalued fractals in <math id="M411"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Cent Eur J Math, 2010, 8(2): 367-377.
ROSHAN J R, PARVANEH V, KADELBURG Z. Common fixed point theorems for weakly isotone increasing mappings in ordered <math id="M412"><mi>b</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479192&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479222&type=1.439333442.28600001-metric spaces [J]. Journal of Nonlinear Science and its Applications(JNSA), 2014, 7(4): 229-245.
BARI C D, VETRO P. <math id="M413"><mi>ϕ</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479241&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479238&type=2.032000062.87866688-pairs and common fixed points in cone metric spaces [J]. Rendiconti Del Circolo Matematico Palermo, 2008, 57: 279-285.
ABBAS M, JUNGCK G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces[J]. Journal of Mathematical Analysis and Applications, 2006, 341(1): 416-420.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构