武汉理工大学土木工程与建筑学院,湖北 武汉 430070
秦世强(1987年生),男;研究方向:桥梁健康监测;E-mail: shiqiangqin@whut.edu.cn
纸质出版日期:2021-11-25,
网络出版日期:2021-01-09,
收稿日期:2020-02-12,
录用日期:2020-03-04
扫 描 看 全 文
秦世强,廖思鹏,黄春雷等.基于自适应Kriging模型的人行斜拉桥有限元模型修正[J].中山大学学报(自然科学版),2021,60(06):43-53.
QIN Shiqiang,LIAO Sipeng,HUANG Chunlei,et al.Adaptive Kriging model based finite element model updating of a cable-stayed pedestrian bridge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):43-53.
秦世强,廖思鹏,黄春雷等.基于自适应Kriging模型的人行斜拉桥有限元模型修正[J].中山大学学报(自然科学版),2021,60(06):43-53. DOI: 10.13471/j.cnki.acta.snus.2020.02.12.2020B009.
QIN Shiqiang,LIAO Sipeng,HUANG Chunlei,et al.Adaptive Kriging model based finite element model updating of a cable-stayed pedestrian bridge[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(06):43-53. DOI: 10.13471/j.cnki.acta.snus.2020.02.12.2020B009.
为了更加合理地确定Kriging模型样本点数量,提高Kriging模型对目标函数极值区域的预测精度,提出了一种自适应Kriging模型并将其应用于桥梁结构有限元模型修正。该方法首先通过中心复合设计估算初始样本点数量,然后利用拉丁超立方设计获得初始样本点的空间分布,并初步构建Kriging模型;最后利用期望改善准则(EI准则)控制新增样本点位置,使其位于目标函数极值附近区域;新增样本点的最终数量由收敛准则确定。利用测试函数比较了自适应Kriging模型和标准Kriging模型的预测精度;并以一座人行斜拉桥模型修正为例,对比了基于自适应Kriging模型和标准Kriging模型的修正结果。结果表明:在样本点总数一致的情况下,自适应Kriging模型与标准Kriging模型精度评价指标基本一致,但自适应Kriging模型能够避免样本点空间分布的随机性,提高对目标函数极值区域的预测精度,从而获得更好的修正结果。
To reasonably determine the number of data samples for Kriging model and to improve the predicting accuracy of Kriging model at minimum areas of objective function, this study proposes an adaptive Kriging model and applies it in the finite element model updating of bridge structures. The proposed method first estimates the initial number of data samples using central composite design, then Latin hypercube design is utilized to obtain the spatial distribution of data samples. The Kriging model is constructed based on the initial data samples set. Finally, the expected improvement (EI) criterion is employed to control the location of newly increased data samples, making them mainly locate at the minimum areas of objective function. The number of newly increased data samples are determined by convergence criterion. The predicting accuracy of standard Kriging model and adaptive Kriging model are compared by using test functions. The model updating of a pedestrian cable-stayed bridge is taken as an example, in which the updating results of Kriging model and adaptive Kriging model are compared. The results show that the accuracy indexes of Kriging model and adaptive Kriging model are almost the same under that the premise the total number of data samples is equal. However, the adaptive Kriging model can avoid the random distribution of data samples in design space, thus provide a higher predicting accuracy in minimum areas of the objective function and obtain better updating results.
桥梁工程自适应Kriging模型模型修正期望改善准则代理模型
bridge engineeringadaptive Kriging modelmodel updatingexpected improve criterionsurrogate model
单德山, 顾晓宇, 李中辉, 等. 桥梁结构有限元模型的仿射-区间不确定修正[J]. 中国公路学报, 2019, 32(2): 67-76.
万华平, 任伟新, 黄天立. 基于贝叶斯推理的随机模型修正方法[J]. 中国公路学报, 2016, 29(4): 67-76+95.
UMAR S,BAKHARY N , ABIDIN A R Z. Response surface methodology for damage detection using frequency and mode shape[J]. Measurement, 2018,115(2):258-268.
QIN S, ZHOU Y, CAO H, et al. Model updating in complex bridge structures using kriging model ensemble with genetic algorithm[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3567-3578.
ZHOU L, YAN G, OU J. Response surface method based on radial basis functions for modeling large-scale structures in model updating[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(3): 210-226.
XIANG H, LI Y, LIAO H, et al. An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers[J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 701-713.
WANG J,WANG C,ZHAO J. Frequency response function-based model updating using Kriging model [J]. Mechanical Systems and Signal Processing, 2017, 87:218-228.
胡俊亮,颜全胜,郑恒斌,等. 基于Kriging模型的钢管混凝土连续梁拱桥有限元模型修正[J]. 振动与冲击, 2014, 33(14):33-39.
KHODAPARAST H H, MOTTERSHEAD J E, BADCOCK K J. Interval model updating with irreducible uncertainty using the Kriging predictor [J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1204-1226.
LIU Y,LI Y,WANG D J, et al. Model updating of complex structures using the combination of component mode synthesis and Kriging predictor[J].The Scientific World Journal, 2014(14):1-13.
CHEN Z,QIU H,GAO L,et al. A local adaptive sampling method for reliability-based design optimization using Kriging model[J]. Structural and Multidisciplinary Optimization, 2014, 49(3):401-416.
高月华,王希诚. 基于Kriging代理模型的多点加点序列优化方法[J]. 工程力学, 2012, 29(4):90-95.
贾布裕,余晓琳,颜全胜,等. 基于Kriging改进响应面法的桥梁地震动力可靠度研究[J]. 振动与冲击, 2013, 32(16):82-87.
李永乐,鲍玉龙,向活跃. 基于代理模型的无砟轨道模拟方法及其在车-线-桥分析中的应用[J]. 土木工程学报, 2018, 51(5):95-102.
杨修铭,郭杏林,李东升. 基于Kriging模型的频响函数有限元模型修正方法[J]. 计算力学学报, 2018, 35(4):487-493.
KLEIJNEN J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3):707-716.
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
闫桂荣,段忠东,欧进萍. 遗传算法在结构有限元模型修正中的应用[J]. 哈尔滨工业大学学报, 2007, 39(2):181-186.
SHABBI R, OMENZETTER F, PIOT R. Particle swarm optimization with sequential niche technique for dynamic finite element model updating[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(5):359-375.
WANG F,XU Y, SUN B, et al. Updating multiscale model of a long-span cable-stayed bridge[J]. Journal of Bridge Engineering, 2018, 23(3): 04017148.
0
浏览量
0
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构