西安工程大学理学院数学系,陕西 西安 710048
李冬艳(1986生),女;研究方向:偏微分方程;E-mail:w408867388w@126.com
纸质出版日期:2021-07-25,
网络出版日期:2021-06-02,
收稿日期:2019-11-12,
录用日期:2021-03-11
扫 描 看 全 文
李冬艳,李莉.半线性退化椭圆方程组解的奇异性和退化估计[J].中山大学学报(自然科学版),2021,60(04):164-169.
LI Dongyan,LI Li.Singularity and decay estimate of solutions of a system of semi-linear degenerate elliptic equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):164-169.
李冬艳,李莉.半线性退化椭圆方程组解的奇异性和退化估计[J].中山大学学报(自然科学版),2021,60(04):164-169. DOI: 10.13471/j.cnki.acta.snus.2019A086.
LI Dongyan,LI Li.Singularity and decay estimate of solutions of a system of semi-linear degenerate elliptic equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(04):164-169. DOI: 10.13471/j.cnki.acta.snus.2019A086.
基于Re-scaling变换及Double引理,建立半线性退化椭圆方程组解的奇异性和退化估计。作为应用,在有界区域上,证明带有边值问题退化椭圆方程组正解的先验估计。
Some singularity and decay estimates of solutions for a degenerate semi-linear elliptic equation system are established based on re-scaling arguments combined with a doubling property. As an application, a priori bound of solutions of a boundary value problem to a degenerate semi-linear elliptic equation system is derived.
Re-scaling变换奇异性和退化性先验估计
re-scalingsingularity and decaya priori bound
MITIDIERI E. Nonexistence of positive solutions of semi-linear elliptic systems in <math id="M161"><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mi>N</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479514&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49479513&type=3.471333502.53999996 [J]. Differential and Integral Equations,1996, 9(3): 465-479.
MITIDIERI E, POHOZAEV S I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities [J]. Proceedings of the Steklov Institute of Mathematics, 2001, 234: 1-375.
POLACIK P, QUITTNER P, SOUPLET P. Singularity and decay estimates in superlinear problems via Liouville-type theorems I. Elliptic equations and systems [J]. Duke Math J,2007,139(3): 555-579.
SOUPLET P. The proof of the Lane-Emden conjecture in four space dimensions [J]. Advances in Mathematics, 2009, 221(5): 1409-1427.
FELMER P, DE FIGUEIREDO D G. A Liouville-type Theorem for elliptic systems [J]. Ann Scuola Norm Sup Pisa, 1994, XXI:387-397.
BIDAUT-VERON M F, GIACOMINI H. A new dynamical approach of Emden-Fowler equations and systems [J]. Advances in Differential Equations, 2010, 15(11): 1033-1082.
PHAN Q H. Liouville-type theorems and bounds of solutions for Hardy-Hénon elliptic systems [J]. Advances in Differential Equations, 2011,17(7/8): 605-634.
GUO Z M, WAN F S. Further study of a weighted elliptic equation [J]. Science China Mathematics, 2017, 60(12): 2391-2406.
GIDAS B, SPRUCK J. A priori bounds for positive solutions of nonlinear elliptic equations [J]. Communications in Partial Differential Equations, 2007, 6(8): 883-901.
关晓红. 几类退化椭圆型方程及方程组研究[D]. 新乡: 河南师范大学, 2018.
GUAN X H. Research on some classes of degenerate elliptic equations and systems [D].Xinxiang: Hennan Normal University, 2018.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构