中山大学航空航天学院,广东 广州 510006
付康胜(1995年生),男;研究方向:结构振动参数识别;E-mail: fuksh@mail2.sysu.edu.cn
汪利(1988年生),男;研究方向:结构振动;E-mail:wangli75@mail.sysu.edu.cn
纸质出版日期:2021-05-25,
网络出版日期:2021-01-07,
收稿日期:2019-12-10,
录用日期:2020-02-11
扫 描 看 全 文
付康胜,吕中荣,汪利.基于逐步最小二乘算法的风荷载识别[J].中山大学学报(自然科学版),2021,60(03):124-130.
FU Kangsheng,LU Zhongrong,WANG Li.Wind load identification based on recursive least-squares algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):124-130.
付康胜,吕中荣,汪利.基于逐步最小二乘算法的风荷载识别[J].中山大学学报(自然科学版),2021,60(03):124-130. DOI: 10.13471/j.cnki.acta.snus.2019.12.10.2019B123.
FU Kangsheng,LU Zhongrong,WANG Li.Wind load identification based on recursive least-squares algorithm[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):124-130. DOI: 10.13471/j.cnki.acta.snus.2019.12.10.2019B123.
风荷载识别是典型的反问题,其主要思想是通过测量的结构响应来反演作用在其上的风荷载。首先,通过实测响应反演风荷载能为建筑设计及健康监测提供可靠的风荷载数据。基于Davenport风速度谱拟合出风荷载的时程,基于模态叠加法建立动力方程,由精细积分法求解结构动力响应,进行正问题分析,可得到加速度响应与荷载间的线性关系。因常见的荷载反演方法增广卡尔曼滤波方法把荷载也当成一个状态变量,每个时间步的荷载增量是随机的,需要额外给出协方差的信息。而,实际中荷载增量可能并非随机的,且其协方差信息未知,这将导致较大的荷载识别误差。随后,提出了一种逐步最小二乘算法,它以每个时间步的状态方程和观测方程最小二乘为目标函数,逐步识别荷载且不涉及荷载的协方差信息。算例结果表明,在相同的观测数据量下,逐步最小二乘算法的识别结果优于增广卡尔曼滤波的识别结果,并且拥有良好的抗噪性能。
Wind load inversion based on measured response can provide reliable wind load data for building design and health monitoring. In this paper, the time historical of wind load was fitted based on Davenport wind velocity spectrum.The dynamic equation was established based on the modal superposition method. The dynamic response of the structure was solved by the fine integration method, and the positive problem was analyzed to obtain the linear relationship between the acceleration response and the load. Furthermore, wind load inversion is a typical inverse problem, which aims to identify the wind load of a structure by the measured acceleration. Augmented Kalman filter is a common load inversion method which takes the load as a state variable. The load increment at each time step is random, thus requires additional covariance information. In practice, non-random load increment and unknown covariance information can lead to a large load identification error. For this reason, this paper proposes a stepwise least square algorithm, which takes the equation of state and the least square of the observation equation of each time step as the objective function to gradually identify the load. The advantage is that it does not involve covariance information of the load. The result of the example shows that the recognition result of the stepwise least square algorithm is better than that of the augmented Kalman filter with good anti-noise performance.
风荷载荷载识别最小二乘法卡尔曼滤波
wind loadload identificationleast square methodKalman filter
项海帆 . 结构风工程研究的现状和展望[J]. 振动工程学报, 1997, 10(3): 258-263.
XIANG H F. Present situation and prospect of structural wind engineering[J].Journal of Vibration Engineering,1997,10(3): 258-263.
谭栋,汪利,吕中荣.基于BMO算法的梁冲击荷载识别[J].中山大学学报(自然科学版),2019,58(1):74-82.
TAN D,WANG L,LU Z G. Identification of impact load exerted on beam based on BMO[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(1): 74-82.
陈隽,李杰.高层建筑风荷载反演研究[J].力学季刊,2001(1):72-77.
CHEN J,LI J. Study on wind load lnverse of tall building[J]. Chinese Quarterly of Mechanics, 2001(1): 72-77.
方明新. 超高层建筑风荷载反演分析[D].武汉:武汉理工大学,2016.
FANG M X. Inverse analysis of wind loads on super tall buildings[D]. Wuhan: Wuhan University of Technology,2016.
HWANG J S , KAREEM A , KIM H . Wind load identification using wind tunnel test data by inverse analysis[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(1):18-26.
AZAM S E, CHATZI E, PAPADIMITRIOU C. A dual Kalman filter approach for state estimation via output-only acceleration measurements[J]. Mechanical Systems and Signal Processing, 2015(60): 866-886.
LOURENS E, REYNDERS E, DE ROECK G, et al. An augmented Kalman filter for force identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2012, 27: 446-460.
郅伦海,余攀.基于卡尔曼滤波的高层建筑风荷载反演研究[J].武汉理工大学学报,2016,38(2):57-63+81.
ZHI L H,YU P. Wind load estimation of tall building by a Kalman filtering based inverse method[J]. Journal of Wuhan University of Technology, 2016, 38(2): 57-63+81.
叶静娴,吕中荣,汪利.基于逐步优化算法的随机波浪荷载反演[J].中山大学学报(自然科学版),2019,58(5):33-38.
YE J X,LU Z R,WANG L. Random wave load inversion based on recursive optimization algorithm[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(5): 33-38.
李正农,郭昌根,尚扬,等.基于实测加速度的高层建筑风荷载反演[J].自然灾害学报,2017,26(3):113-123.
Ll Z N,GUO C G,SHANG Y, et al. Wind load inversion of highrise building based on measured acceleration[J]. Journal of Natural Disasters, 2017, 26(3): 113-123.
董军,邓洪洲,刘学利.高层建筑脉动风荷载时程模拟的AR模型方法[J].南京建筑工程学院学报,2000(2):20-25.
DONG J,DENG H Z,LIU X L.AR model method for time-history imitation of pulse wind load acting on high-rise buildings[J]. Journal of Nanjing Architectural and Civil Engineering Institute, 2000(2): 20-25.
富明慧,李勇息.求解病态线性方程组的预处理精细积分法[J].应用数学和力学,2018,39(4):462-469.
FU M H,LI Y X. A preconditioned precise integration method for solving Ill-Conditioned linear equations[J]. Applied Mathematics and Mechanics, 2018, 39(4): 462-469.
富明慧,张文志.病态代数方程的精细积分解法[J].计算力学学报,2011,28(4):530-534.
FU M H,ZHANG W Z. Precise integration method for solving ill-conditioned algebraic equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(4): 530-534.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构