郑州轻工业大学数学与信息科学学院,河南 郑州 450002
吴甜甜(1993年生),女;研究方向:非线性偏微分方程;E-mail:1048002206 @qq.com
刘静静(1983年生),女;研究方向:非线性偏微分方程;E-mail:jingjing830306@163.com
纸质出版日期:2020-11-25,
收稿日期:2019-11-22,
扫 描 看 全 文
吴甜甜,刘静静.两个分量的b族方程组的弱适定性[J].中山大学学报(自然科学版),2020,59(06):154-162.
WU Tiantian,LIU Jingjing.Weak well-posedness for the two-component b family system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):154-162.
吴甜甜,刘静静.两个分量的b族方程组的弱适定性[J].中山大学学报(自然科学版),2020,59(06):154-162. DOI: 10.13471/j.cnki.acta.snus.2019.11.22.2019A087.
WU Tiantian,LIU Jingjing.Weak well-posedness for the two-component b family system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):154-162. DOI: 10.13471/j.cnki.acta.snus.2019.11.22.2019A087.
使用特征线方法得到了两个分量的
b
族方程组的Cauchy问题当初值
<math id="M1"><mo stretchy="false">(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo>
</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo><mo>⋂</mo><msup><mrow><mi>W</mi></mrow><mrow><mn mathvariant="normal">1</mn><mo>
</mo><mi mathvariant="normal">∞</mi></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo><mo>⋂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490338&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490337&type=
60.28266525
4.31799984
时解的弱适定性。首先,将两个分量的
b
族方程组转化为一个ODE系统,其次通过解的存在唯一性理论,得到该ODE系统解的存在唯一性,最后由该ODE系统与两个分量的
b
族方程组之间的关系,得到两个分量的
b
族方程组解的存在唯一性并给出解关于初值稳定性的结论。
By using the characteristic line method, the weak well-posedness of the Cauchy problem of the two-component
b
family system is obtained when the initial value
<math id="M2"><mo stretchy="false">(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo>
</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo><mo>⋂</mo><msup><mrow><mi>W</mi></mrow><mrow><mn mathvariant="normal">1</mn><mo>
</mo><mi mathvariant="normal">∞</mi></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490340&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490339&type=
41.74066544
5.07999992
<math id="M3"><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo><mo>⋂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msup><mo stretchy="false">(</mo><mi mathvariant="normal">ℝ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490342&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490341&type=
25.56933403
3.97933340
. Firstly, the
b
family system is transformed into an ODE system. Then, the existence and uniqueness of the solution of the ODE system are obtained by the existence and uniqueness theory of the solution. Finally, the existence and uniqueness of the solution of the
b
family system are obtained by the relationship between the two-component
b
family system and the ODE system. Moreover, the stability of the solutions with respect to the initial value is given.
两个分量的b族方程组弱适定性特征线方法
two-component b family systemweak well-posednesscharacteristic line method
GUHA P. Euler-Poincaré formalism of (two component) Degasperis-Procesi and Holm-Staley type systems [J]. Journal of Nonlinear Mathematical Physics, 2007, 14(3): 398-429.
GUAN C, YIN Z. Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system [J]. Journal of Differential Equations, 2010, 248(8): 2003-2014.
CAMASSA R, HOLM D D. An integrable shallow water equation with peaked solitons [J]. Physical Review Letters, 1993, 71(11): 1661-1664.
GUI G, LIU Y. On the Cauchy problem for the two-component Camassa–Holm system [J]. Mathematische Zeitschrift, 2011, 268(1/2): 45-66.
LEE J M, PRESTON S C. Local well-posedness of the Camassa-Holm equation on the real line [J]. Discrete & Continuous Dynamical Systems-A, 2017, 37(6): 3285-3299 .
YIN Z, HU Q. Well-posedness and blow-up phenomena for a periodic two-component Camassa–Holm equation [J]. Proceedings of the Royal Society of Edinburgh, 2011, 141(01):93-107.
HU Q, YIN Z. Blowup phenomena for a new periodic nonlinearly dispersive wave equation [J]. Mathematische Nachrichten,2010, 283(11): 1613-1628.
ZHANG S, YIN Z. Global solutions and blow-up phenomena for the periodic b-equation [J]. Journal of the London Mathematical Society, 2010, 82(2): 482-500.
LIU J, YIN Z. On the Cauchy problem of a two-component b-family system [J]. Nonlinear Analysis Real World Applications, 2011, 12(6): 3608-3620.
WEI F, LI Z. Blow-up and infinite propagation speed for a two-component b-family system [J]. Boundary Value Problems, 2014, 2014(1):224.DOI:10.1186/s13661-014-0224-1http://dx.doi.org/10.1186/s13661-014-0224-1
MIN Z, XU J. On the Cauchy problem for the two‐component b‐family system [J]. Mathematical Methods in the Applied Sciences, 2013, 36(16):2154-2173.
陈丽娜,关春霞,冯兆永,等. 两个分支的Degasperis-Procesi系统的弱适定性[J]. 中山大学学报(自然科学版), 2019, 58(1):131-137.
CHEN L N, GUAN C X, FENG Z Y, et al. Weak well-posedness for the two-component Degasperis-Procesi system [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2019,58(1): 131-137.
关春霞, 冯兆永. 弱耗散的Degasperis-Procesi方程弱解的存在性[J]. 中山大学学报(自然科学版), 2014, 53(2): 49-54.
GUAN C X, FENG Z Y, The existence of global entropy weak solutions for a weakly dissipative Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2014, 53(2): 49-54.
GUAN C, ZHU H. Well-posedness of a class of solutions to an integrable two-component Camassa–Holm system [J]. Journal of Mathematical Analysis and Applications,2018.
ZONG X. Properties of the solutions to the two-component b-family systems [J]. Nonlinear Analysis Theory Methods & Applications, 2012, 75(17).
NIU W, ZHANG S. Blow-up phenomena and global existence for the nonuniform weakly dissipative b-equation [J]. Journal of Mathematical Analysis and Applications, 2011, 374(1): 166-177.
LINARES F, PONCE G, SIDERIS T C. Properties of solutions to the Camassa-Holm equation on the line in a class containing the peakons [J]. arXiv,2016.[arXiv:1609.06212]
王健鸣,冯兆永,刘成霞. Degasperis-Procesi方程的弱适定性[J]. 中山大学学报(自然科学版), 2018, 57(4): 86-91.
WANG J M, FENG Z Y, LIU C X.Weak well-posedness for a Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(4): 86-91.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构