中山大学航空航天学院,广东 广州 510275
聂滋森(1998年生),男;研究方向:工程力学;E-mail:niezs@mail2.sysu.edu.cn
汪利(1988年生),男;研究方向:工程力学,结构健康监测;E-mail:wangli75@mail.sysu.edu.cn
纸质出版日期:2020-11-25,
收稿日期:2019-11-05,
扫 描 看 全 文
聂滋森,李冬安,曹明志等.基于频率数据与稀疏正则化的悬臂梁损伤识别[J].中山大学学报(自然科学版),2020,59(06):148-153.
NIE Zisen,LI Dongan,CAO Mingzhi,et al.Structural damage identification based on frequency data and sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):148-153.
聂滋森,李冬安,曹明志等.基于频率数据与稀疏正则化的悬臂梁损伤识别[J].中山大学学报(自然科学版),2020,59(06):148-153. DOI: 10.13471/j.cnki.acta.snus.2019.11.05.2019B112.
NIE Zisen,LI Dongan,CAO Mingzhi,et al.Structural damage identification based on frequency data and sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):148-153. DOI: 10.13471/j.cnki.acta.snus.2019.11.05.2019B112.
振动频率是描述结构自身振动特性的数据,因其比较容易获取,常被用于识别结构损伤。但由于频率数据的量相对较少,损伤识别通常是非适定的。文章构造了一个新的基于频率数据的目标函数,发展了一种新的稀疏正则化方法以克服损伤识别问题的非适定性。该方法运用少量的频率数据就能识别出梁结构的损伤位置。最后,将该方法运用到悬臂梁结构的损伤识别实验当中去,发现识别出的损伤与实际相符,验证了该方法的正确性。
Vibration frequency describes the structure's vibration characteristics. Since frequency data can be easily obtained, it's often applied in the identification of structural damage. However, there's a defect that the amount of frequency data is usually small, which would cause the identification to be ill-posed. This paper proposes a new method in damage identification using frequency data. In this method, we introduce sparse regularization to overcome the ill-posedness of the problem. The proposed damage identification approach can work for merely low order frequency data. Damage identification of a cantilever beam is conducted to verify the proposed approach. As a result, the exact position of the damage can be determined, which proves the approach to be functional and accurate.
损伤识别稀疏正则化频率数据交替最小化方法阈值设定法
damage identificationsparse regularizationvibration frequency dataalternating minimization approachthreshold setting method
LU Z R, WANG L. An enhanced response sensitivity approach for structural damage identification: convergence and performance [J]. International Journal for Numerical Methods in Engineering, 2017,1l1: 1231-1251.
TIKHONOV A M. On the solution of ill-posed problems and the method of regularization [J]. Soviet Mathematics, 1963, 4: 1035-1038.
YANG Y, NAGARAJAIAH S. Structural damage identification via a combination of blind feature extraction and sparse representation classification [J]. Mechanical Systems and Signal Processing, 2014,45: 1-23.
HERNANDEZ E M. Identification of isolated structural damage from incomplete spectrum information using l1-norm minimization [J]. Journal of Sound and Vibration, 2014, 46: 59-69.
HERNANDEZ E M. Identification of localized structural damage from highly incomplete modal in-formation: theory and experiments [J]. Journal of Engineering Mechanics, 2016, 142(2): 04015075.
HOU R, XIA Y, ZHOU X. Structural damage detection based on l1 regularization using natural frequencies and mode shapes [J]. Structural Control and Health Monitoring, 2018, 25(3): e2107.
ZHANG C D, XU Y L. Comparative studies on damage identification with Tikhonov regularization and sparse regularization [J]. Structural Control and Health Monitoring, 2016, 23: 560-579.
ZHOU X Q, XIA Y, WENG S. L1 regularization approach to structural damage detection using frequency data [J]. Structural Health Monitoring, 2015, 14(6): 571-582.
WANG L, LU Z R, Sensitivity-free damage identification based on incomplete modal data, sparse regularization and alternating minimization approach [J]. Mechanical Systems and Signal Processing, 2019, 120: 43-68.
潘天成, 吕中荣, 汪利. 基于稀疏正则化的稳态热源识别 [J]. 中山大学学报(自然科学版), 2020, 59(1): 43-49.
PAN T, LU Z R, WANG L. Steady-state heat source identification based on sparse regularization [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(1): 43-49.
0
浏览量
1
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构