湘南学院数学与金融学院,湖南 郴州 423000
向红军(1967年生),男;研究方向:神经网络;E-mail:hunxhjxhj67@126.com
王金华(1968年生),女;研究方向:分数阶微分差分方程;E-mail:hunwjh@163.com
纸质出版日期:2021-05-25,
网络出版日期:2020-11-05,
收稿日期:2019-10-31,
录用日期:2020-10-11
扫 描 看 全 文
向红军,王金华.一类分数阶RNN模型的有限时间稳定性[J].中山大学学报(自然科学版),2021,60(03):174-180.
XIANG Hongjun,WANG Jinhua.Finite-time-stability of a class of fractional order recurrent neural networks[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):174-180.
向红军,王金华.一类分数阶RNN模型的有限时间稳定性[J].中山大学学报(自然科学版),2021,60(03):174-180. DOI: 10.13471/j.cnki.acta.snus.2019.10.31.2019A094.
XIANG Hongjun,WANG Jinhua.Finite-time-stability of a class of fractional order recurrent neural networks[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):174-180. DOI: 10.13471/j.cnki.acta.snus.2019.10.31.2019A094.
基于激励函数的Lipschitz条件,研究了一类分数阶RNNs神经网络模型平衡点的存在唯一性。结合不等式技巧,得到了该系统平衡点的有限时间稳定性的一个充分条件,并给出一个实例说明结果的有效性。
Based on Lipschitz condition of activation functions, a class of fractional-order recurrent neural networks is discussed. Combining with inequality technique, the existence, uniqueness and finite- time-stability of the solutions for this model are studied. An example is given to ensure the main results in the last.
递归神经网络分数阶有限时间稳定性
recurrent neural networksfractional-orderfinite-time-stability
HOPFIELD J J.Neural networks and physical systems with emergent collective computational abilities [C]. Proceeding of the National Academy of Sciences of the United States of America,1982: 2554-2558.
SUN C Y, ZHANG K J, FEI S M, et al. On exponential stability of delayed neural networks with a general class of activation functions [J].Physics Letters A,2002,298: 122-132.
陈钢,王占山.连续时间递归神经网络的稳定性分析[J].沈阳理工大学学报,2007,26(2): 1-4.
CHEN G, WANG Z S. An analysis on the stability of continuous-time recursive neural networks [J]. Transactions of Shenyang Ligong University,2007,26(2): 1-4.
李冠军,徐进. 时滞递归神经网络的全局稳定性的新判据[J].华中师范大学学报(自然科学版),2009, 43(3): 384-387.
LI G J,XU J.New criteria for global stability of recurrent neural networks with delays [J].Journal of Huazhong Normal University(Nat Sci),2009, 43(3): 384-387.
张建海,周文晖,孔万增.时滞递归神经网络鲁棒稳定性分析的统一方法[J].华中科技大学学报(自然科学版),2009,37(6): 28-31.
ZHANG J H,ZHOU W H,KONG W Z.Unified approach for robust stability analysis of delayed recurrent neural networks [J].Journal Huazhong Univ of Sci & Tech (Natural Science Edition),2009,37(6): 28-31.
XIANG H J,CAO J D. Almost periodic solutions of recurrent neural networks with continuously distributed delays [J]. Nonlinear Analysis,2009,71: 6097-6108.
张际雄,李小柳,周伟松.对一类时变时滞递归神经网络的全局渐进稳定性充分性条件的研究[J].绵阳师范学院学报,2014,33(8): 28-33.
ZHANG J X,LI X L,ZHOU W S.On global asymptotical stability analysis of recurrent neural networks with time-varying delays [J]. Journal of Mianyang Normal University,2014,33(8): 28-33.
PAN Q F, ZHANG Z F.Exponential stability of a class of stochastic delay recurrent neural network [J].数学杂志,2014,34(3): 487-496.
邢广霞,高岩波.带有时变时滞的递归神经网络的稳定性分析[J].南通大学学报(自然科学版), 2015,14(3): 12-20.
XING G X,GAO Y B.Stability analysis for recurrent neural networks with time-varying delay [J].Journal of Nantong University(Natural Science Edition),2015,14(3): 12-20.
赵宁,周立群.一类具多比例时滞递归神经网络的全局指数稳定性[J].工程数学学报,2016,33(5): 450-462.
ZHAO N, ZHOU L Q.Global exponential stability of a class of recurrent neural networks with multi-proportional delays [J].Chinese Journal of Engineering Mathematics,2016,33(5): 450-462.
邢琳,周立群. 一类具比例时滞递归神经网络的全局稳定性及仿真[J].天津师范大学学报(自然科学版),2019,39(4): 13-17+27.
XING L,ZHOU L Q.Global stability and simulation of a class of recurrent neural networks with proportional delays [J].Journal of Tianjin Normal University(Natural Science Edition),2019,39(4): 13-17+27.
BAO G, CHEN Y Y,WEN S Y,et al.Stability analysis for memristive recurrent neural network and its application to associative memory [J].Acta Automatica Sinica,2017, 43(12): 2244-2252.
刘凤秋,邱敏. 一类忆阻递归神经网络的全局指数稳定性[J].黑龙江大学自然科学学报,2018,35(4): 407-412.
LIU F Q,QIU M.Global exponential stability of a class of memristor-based recurrent neural networks [J].Journal of Natural Science of Heilongjiang University,2018,35(4): 407-412.
ANASTASIO T J. Non-uniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior [J].CyberneticsBiological, 1998,79(5): 377-391.
BOROOMAND A, MENHAJ M B.Fractional-order Hopfield neural networks [C]// Proceedings of International Conference on Neural Information Processing, 2008: 883-890.
哈金才,杨洪福,张启敏.分数阶模糊时滞神经网络模型解的存在唯一性和有限时间稳定性[J].数学杂志, 2016,36(6): 1261-1272.
HA J C,YANG H F,ZHANG Q M.Existence,Uniqueness and finite time stability of fractional order fuzzy neural networks with delay [J].Journal of Math, 2016,36(6): 1261-1272.
张硕.基于李雅普诺夫方法的分数阶神经网络动力学分析及控制[D].北京:北京交通大学,2017.
ZHANG S.Dynamical analysis and control of fractional-order neural networks based on Lyapunov method [D].Beijing:Beijing Jiaotong University,2017.
王金华,赵育林,向红军.分数微分方程m点边值问题解的存在性与唯一性[J].中山大学学报(自然科学版),2011,50(1):4-8.
WANG J H,ZHAO Y L,XIANG H J.Existence and uniqueness for m-point boundary value problem of fractional differential equation [J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2011,50(1): 4-8.
王金华,向红军,赵育林.一类非线性分数阶差分方程边值问题解的存在性及Ulam稳定性[J].中山大学学报(自然科学版),2016,55(2): 1-6+13.
WANG J H,XIANG H J,ZHAO Y L.Existence and Ulam stability of solutions for a boundary value problem of nonlinear fractional difference equation [J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2016,55(2): 1-6+13.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构