昆明理工大学机电工程学院,云南 昆明 650500
陈明方(1975年生),男;研究方向:机器人控制算法研究及应用、复杂机电系统集成及应用、电路分析及工程应用、智能控制理论及应用;E-mail:mfchen111@sina.com
臧家秀(1993年生),女;研究方向:复杂机电系统集成及应用;E-mail:1273201135@qq.com
纸质出版日期:2020-09-25,
收稿日期:2019-10-28,
扫 描 看 全 文
陈明方,臧家秀,李俊男等.基于视觉的随机位姿工件抓取系统的设计与应用[J].中山大学学报(自然科学版),2020,59(05):78-85.
CHEN Mingfang,ZANG Jiaxiu,LI Junnan,et al.Design and applications of visual-based random poseworkpiece grabbing system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):78-85.
陈明方,臧家秀,李俊男等.基于视觉的随机位姿工件抓取系统的设计与应用[J].中山大学学报(自然科学版),2020,59(05):78-85. DOI: 10.13471/j.cnki.acta.snus.2019.10.28.2019B106.
CHEN Mingfang,ZANG Jiaxiu,LI Junnan,et al.Design and applications of visual-based random poseworkpiece grabbing system[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):78-85. DOI: 10.13471/j.cnki.acta.snus.2019.10.28.2019B106.
针对显示器装配线上显示器的位姿随机性较大、抓取困难的问题,提出了一种基于视觉的随机位姿显示器抓取系统。系统利用Labview的视觉工具包对图像进行采集、处理计算,对不同型号的显示器生成其位姿数据,将该数据送给PLC来控制机器人的抓取动作。并以直角坐标机器人、工业相机和工控机为硬件基础搭建了实验平台,利用Labview软件组建了人机交互界面。实验测试表明,该系统的坐标误差小于0.4 mm,角度最大误差在0.3°内,适用于不同型号显示器,抓取系统的准确性好、可靠性高。
Aiming at the problem of large randomness and difficulty in grasping the displays on the display assembly line
a display grabbing system of random pose based on the vision was proposed. The system used the visual toolkit of Labview to collect and calculate the images
and generated the position data of different types of displays
and sended the data to the PLC to control the grasping action of the robot. The experimental platform was built with cartesian robot
industrial camera and industrial computer as the hardware foundation
and the human-computer interaction interface was configured with Labview software. The experimental shows that the coordinate error of the system is less than 0.4 mm
and the maximum angle error is within 0.3°. It is suitable for different types of displays
and the grasping system has good accuracy and high reliability.
Labview视觉直角坐标机器人图像处理
Labviewvisioncartesian robotimage processing
吴俊君, 胡国生. 室内环境仿人机器人快速视觉定位算法[J]. 中山大学学报(自然科学版), 2013,52(4): 7-13.
WU J J, HU G S. Fast visual positioning algorithm for humanoid robot in indoor environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013,52(4): 7-13.
RADKOWSKI R. Augmented reality-based manual assembly support with visual features for different degrees of difficulty[J]. International Journal of Human-Computer Interantion, 2015, 31(5): 337-349.
BOOTHROYD G. Product design for manufacture and assembly[J]. Computer-Aided Design,1994, 26(7): 505-520.
WANG X, ONG S K, NEE A Y C. A comprehensive survey of augmented reality assembly research[J]. Advances in Manufacturing, 2016, 4(1): 1-22.
张广军. 机器视觉[M]. 北京: 科学出版社, 2005:21-22.
ZHANG G J. Machine vision [M]. Beijing: Science Press, 2005: 21-22.
王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9): 1-13.
WANG T M, TAO Y. The status quo and industrialization development strategy of industrial robot technology in China[J]. Chinese Journal of Mechanical Engineering, 2014, 50(9): 1-13.
王增磊, 晏玉祥, 韩德川, 等. 基于机器视觉的增强现实盲区装配方法[J]. 西北工业大学学报, 2019, 37(3): 496-502.
WANG Z L, YAN Y X, HAN D C, et al. Augmented reality blind zone assembly method based on machine vision[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 496-502.
黄金梭, 沈正华. 基于视觉和工业机器人的动态抓取技术[J]. 包装工程, 2019, 40(11): 6-9+13.
HUANG J S, SHEN Z H. Dynamic grabbing technology based on vision and industrial robots[J]. Packaging Engineering, 2019, 40(11): 6-9+13.
季旭全, 王君臣, 赵江地, 等. 基于机器人与视觉引导的星载设备智能装配方法[J]. 机械工程学报, 2018, 23(1): 63-72.
JI X Q, WANG J C, ZHAO J D, et al. Intelligent assembly method of spaceborne equipment based on robot and vision guidance[J]. Journal of Mechanical Engineering, 2018, 23(1): 63-72.
杨高科. 图像处理、分析与机器视觉(基于LabVIEW)[M]. 北京: 清华大学出版社, 2018: 321-322. .
YANG G K. Image processing、analysis and machine vision (based on LabVIEW)[M]. Beijing: Tsinghua University Press, 2018: 321-322.
张德丰, 张葡青. 基于小波的图像边缘检测算法研究[J]. 中山大学学报(自然科学版), 2007,46(3): 39-42.
ZHANG D F, ZHANG P Q. Research on image edge detection algorithm based on wavelet[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007,46(3): 39-42.
HU M K. Visual pattern recognition by moment invariants[J]. Information Theory Ire Transactions on, 1962, 8(2): 179-187.
殷苏民, 朱锦萍, 王祖声, 等. 基于顶帽变换和最大类间方差法的图像分割方法研究[J]. 科学技术与工程, 2014, 14(7): 66-70.
YIN S M, ZHU J P, WANG Z S, et al. Image segmentation based on top hat transformation and maximum inter-class variance method[J]. Science Technology and Engineering, 2014, 14(7): 66-70.
易三莉, 张桂芳, 贺建峰, 等. 基于最大类间方差的最大熵图像分割[J]. 计算机工程与科学, 2018, 40(10): 1874-1881.
YI S L, ZHANG G F, HE J F, et al. Maximum entropy image segmentation based on maximum inter-class variance[J]. Computer Engineering and Science, 2018, 40(10): 1874-1881.
FALGUNI C, DEBASHIS N, PROVAS K R. Oppositional symbiotic organisms search optimization for multilevel thresholding of color image[J]. Applied Soft Computing Journal, 2019(82): 1-19.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构