兰州交通大学数理学院,甘肃 兰州 730070
张建梅(1991年生),女;研究方向:非线性边值问题;E-mail:19893171158@163.com
李杰梅(1981年生),女;研究方向:非线性边值问题;E-mail: lijiemei81@126.com
纸质出版日期:2020-11-25,
收稿日期:2019-10-10,
扫 描 看 全 文
张建梅,李杰梅.一类带参数的四阶两点边值问题的多解性[J].中山大学学报(自然科学版),2020,59(06):163-169.
ZHANG Jianmei,LI Jiemei.Existence and multiplicity of solutions for a class of fourth-order two-point boundary value problems with parameters[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):163-169.
张建梅,李杰梅.一类带参数的四阶两点边值问题的多解性[J].中山大学学报(自然科学版),2020,59(06):163-169. DOI: 10.13471/j.cnki.acta.snus.2019.10.10.2019A077.
ZHANG Jianmei,LI Jiemei.Existence and multiplicity of solutions for a class of fourth-order two-point boundary value problems with parameters[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):163-169. DOI: 10.13471/j.cnki.acta.snus.2019.10.10.2019A077.
研究一类带参数的四阶两点边值问题
<math id="M1"><mfenced open="{" close="" separators="|"><mrow><mtable columnalign="left"><mtr><mtd><msup><mrow><mi>u</mi></mrow><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">4</mn><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi>β</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>-</mo><mi>α</mi><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo>
</mo><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>
</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>t</mi><mo>∈</mo><mo stretchy="false">(</mo><mn mathvariant="normal">0
1</mn><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo stretchy="false">(</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false">(</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490442&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490439&type=
73.32133484
9.82133293
这里参数
<math id="M2"><mi>α</mi><mo>
</mo><mi>β</mi><mo>∈</mo><mi mathvariant="normal">R</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490482&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490480&type=
11.00666714
2.87866688
且
<math id="M3"><mi>α</mi><mo>≥</mo><mo>-</mo><mfrac><mrow><msup><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">4</mn></mrow></mfrac></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490487&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490484&type=
10.83733368
7.02733326
,
<math id="M4"><mi>β</mi><mo><</mo><mn mathvariant="normal">2</mn><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490498&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490495&type=
10.24466705
3.13266659
,
<math id="M5"><mfrac><mrow><mi>α</mi></mrow><mrow><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow></mfrac><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490518&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490500&type=
16.51000023
7.02733326
。在非线性项
<math id="M6"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490505&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490521&type=
0.93133330
2.96333337
满足一定的条件下,运用Leggett-Williams不动点定理,获得所讨论问题至少三个非负解的存在性结果。
A class of fourth-order two-point boundary value problems with parameters
<math id="M7"><mfenced open="{" close="" separators="|"><mrow><mtable columnalign="left"><mtr><mtd><msup><mrow><mi>u</mi></mrow><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">4</mn><mo stretchy="false">)</mo></mrow></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi>β</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>-</mo><mi>α</mi><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo>
</mo><mi>u</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>
</mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mi>t</mi><mo>∈</mo><mo stretchy="false">(</mo><mn mathvariant="normal">0
1</mn><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo stretchy="false">(</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false">(</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mn mathvariant="normal">0</mn><mo stretchy="false">)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo stretchy="false">(</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490511&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490508&type=
73.32133484
9.82133293
are studied, where the parameters
<math id="M8"><mi>α</mi><mo>
</mo><mi>β</mi><mo>∈</mo><mi mathvariant="normal">R</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490529&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490513&type=
12.78466702
3.38666677
and
<math id="M9"><mi>α</mi><mo>≥</mo><mo>-</mo><mfrac><mrow><msup><mrow><mi>β</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow><mrow><mn mathvariant="normal">4</mn></mrow></mfrac></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490548&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490531&type=
12.53066635
7.95866680
,
<math id="M10"><mi>β</mi><mo><</mo><mn mathvariant="normal">2</mn><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490538&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490551&type=
11.76866722
3.64066648
,
<math id="M11"><mfrac><mrow><mi>α</mi></mrow><mrow><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">4</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><msup><mrow><mi mathvariant="normal">π</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></mrow></mfrac><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490542&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490555&type=
19.04999924
7.95866680
.Under certain conditions of the nonlinear term
<math id="M12"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490547&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490544&type=
1.10066664
3.47133350
, the existence of at least three non-negative solutions for the discussed problem are obtained by using fixed point results of Leggett-Williams type.
四阶多解性Leggett-Williams不动点定理
fourth-ordermultiple positive solutionsLeggett-Williams fixed point theorem
LI Y X. Positive solutions of fourth-order boundary value problems with two parameters [J].Math Anal Appl, 2003,281: 477-484.
CUI Y Q. Multiple solutions to fourth-order boundary value problems [J]. Appl Math Comput,2009,57: 643-649.
HE T S, SU Y L. On discrete fourth-order boundary value problems with three parameters [J].Appl Math Comput, 2010, 233(10): 2506-2520.
MA R Y, XU L. Existience of positive solutions of a nonlinear fourth-order boundary value problem [J]. Appl Math Lett, 2010,23: 537-543.
岳蔓,韩晓玲.带参数的四阶两点边值问题正解的存在性[J].四川师范大学学报(自然科学版),2015,38(3):333-336.
YUE M,HAN X L.Existence of solutions for fourth-order two-point boundary value problems with parameters [J].Journal of Sichuan Normal University:Natueal Science,2015,38(3):333-336.
CABADA A, SAAVEDRA L. Existence of solutions for <math id="M252"><mi>n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49492059&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49492057&type=1.608666662.28600001th nonlinear differential boundary value problems by means of fixed point theorems [J].Nonlinear Anal Real World Appl,2018,42: 180-206.
CABADA A, PRECUP R, SAAVEDRA L, et al.Multiple solutions to a fourth-order boundary value problem [J]. Differential Equations,2016,254: 1-18.
AVERY R I,ELOE P,HENDERSON J. A Leggett-Williams type theorem applied to a fourth order problem [J]. Commun Appl Anal,2012,16(4): 578-588.
GUPTA C P. Existence and uniqueness theorems for a bending of an elastic beam equation [J].Appl Anal,1988,26: 289-304.
GUPTA C P. Existence and uniqueness results for the bending of an elastic beam equation at resonance [J]. Math Anal Appl,1988,135: 208-225.
林壮鹏,徐远通,郭志明.一类非线性算子的不动点理论及其应用[J].中山大学学报(自然科学版),2000,39(6):26-29.
LIN Z P,XU Y T,GUO Z M.Fixed point theorems of a class of nonlinear operators and their applications [J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000,39(6): 26-29.
成立花.Banach空间混合型泛函方程的稳定性问题[J].中山大学学报(自然科学版),2017,56(6): 68-71.
CHENG L H.Stability of a mixed type functional equation in Banach spaces [J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017,56(6): 68-71.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构