广东工业大学应用数学学院,广东 广州 510520
邓丽梅(1993年生),女;研究方向:运筹与控制在金融中的应用;E-mail:2992075099@qq.com
谷爱玲(1976年生),女;研究方向:运筹与控制在金融中的应用;E-mail:94498141@qq.com
纸质出版日期:2020-09-25,
收稿日期:2019-10-10,
扫 描 看 全 文
邓丽梅,谷爱玲,伊博.一类随机模型下DC养老金的最优投资策略[J].中山大学学报(自然科学版),2020,59(05):19-28.
DENG Limei,GU Ailing,YI Bo.Optimal investment strategy under a stochastic model for DC pension[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):19-28.
邓丽梅,谷爱玲,伊博.一类随机模型下DC养老金的最优投资策略[J].中山大学学报(自然科学版),2020,59(05):19-28. DOI: 10.13471/j.cnki.acta.snus.2019.10.10.2019A076.
DENG Limei,GU Ailing,YI Bo.Optimal investment strategy under a stochastic model for DC pension[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):19-28. DOI: 10.13471/j.cnki.acta.snus.2019.10.10.2019A076.
研究了DC型养老金计划参与者的最优投资策略
其中金融市场由一个无风险资产和一个风险资产组成
风险的市场价格由仿射平方根随机模型描述。利用随机控制理论
通过求解相应的Hamiltion-Jacobi-Bellman(HJB)方程
得到CRRA效用下最优值函数和最优投资策略的解析式。最后
通过数值算例
阐述了风险资产的随机因子和漂移率对最优投资策略的影响
并发现当市场往良性状态发展时
投资在风险资产的财富比例将不断增大;但在相同的市场状态下
当初始财富足够大时
投资在风险资产的财富比例几乎与投资期限无关。
The optimal investment strategy of the participants in the DC pension plan is studied.The financial market consists of a risk-free asset and a risky asset
and the market price of risk depends on affine-form square-root stochastic model.By using the stochastic control theory and solving the corresponding Hamiltion-Jacobi-Bellman (HJB) equation
the analytic expressions of the optimal value function and the optimal investment strategy under the CRRA utility are obtained.Finally
through numerical examples
the impact of stochastic factor and appreciation rate of the risky asset on the optimal investment strategy are explained
and it is found that the wealth proportion invested in the risky asset will continue to increase when the market state is developing to a positive state;but in the same market state
the optimal investment proportion is almost not affected by the investment period when the initial wealth is large enough.
DC型养老金计划最优投资策略仿射平方根随机模型Hamiltion-Jacobi-Bellman方程
DC pension planoptimal investment strategyaffine-form square-root stochastic modelHamiltion-Jacobi-Bellman equation
VIGNA E, HABERMAN S. Optimal investment strategy for defined contribution pension schemes [J]. Insurance Mathematics and Economics, 2001, 28(2): 233-262.
HABERMAN S, VIGNA E. Optimal investment strategies and risk measures in defined contribution pension schemes [J]. Insurance Mathematics and Economics, 2002, 31(1): 35-69.
DEVOLDER P, PRINCEP M B, FABIAN I D. Stochastic optimal control of annuity contracts [J]. Insurance Mathematics and Economics, 2003, 33(2): 227-238.
GAO J W. Stochastic optimal control of DC pension funds [J]. Insurance Mathematics and Economics, 2008, 42(3): 1159-1164.
张初兵, 荣喜民. 仿射利率模型下确定缴费型养老金的最优投资[J]. 系统工程理论与实践, 2012, 32(5): 1048-1056.
ZHANG C B, RONG X M. Optimal investment for DC pension under the affine interest rate model [J]. Systems Engineering: Theory & Practice, 2012, 32(5): 1048-1056.
高建伟, 乌云高. 不确定理论下的DC型养老金的最优投资策略问题[J]. 数学的实践与认识, 2018, 48(4): 97-106.
GAO J W, WU Y G. Optimal portfolio strategy of a defined contribution pension plan under the uncertainty theory [J]. Mathematics in Practice and Theory, 2018, 48(4): 97-106.
HE L, LIANG Z X. Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework [J]. Insurance Mathematics and Economics, 2013, 53(3): 643-649.
COX J C, ROSS S A. The valuation of options for alternative stochastic processes [J]. Journal of Financial Economics, 1976, 3(1): 145-166.
ZENG X D, TAKSAR M. A stochastic volatility model and optimal portfolio selection [J]. Quantitative Finance, 2013, 13(10): 1547-1558.
CHACKO G, VICEIRA L M. Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets [J]. Review of Financial Studies, 2005, 18(4): 1369-1402.
NOH E J, KIM J H. An optimal portfolio model with stochastic volatility and stochastic interest rate [J]. Journal of Mathematical Analysis and Applications, 2010, 375(2): 510-522.
林祥, 杨益非. Heston随机方差模型下确定缴费型养老金的最优投资[J]. 应用数学, 2010, 23(2): 413-418.
LIN X, YANG Y F. Optimal investment for defined contribution pension plans under Heston model [J]. Mathematica Applicata, 2010, 23(2): 413-418.
XIAO J W, YIN S H, QIN C L. Constant elasticity of variance model and analytical strategies for annuity contracts [J]. Applied Mathematics and Mechanics, 2006, 27(11): 1499-1506.
GAO J W. Optimal portfolios for DC pension plans under a CEV model [J]. Insurance Mathematics and Economics, 2009, 44(3): 479-490.
张初兵, 荣喜民, 侯如靖,等. Heston模型下确定缴费型养老金的投资组合优化[J]. 系统工程, 2012, 30(12): 39-44.
ZHANG C B, RONG X M, HOU R J,et al. Investment portfolio optimization for fefined-contribution pension under a Heston model [J]. Systems Engineering, 2012, 30(12): 39-44.
SHEN Y, ZENG Y. Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process [J]. Insurance Mathematics and Economics, 2015, 62: 118-137.
谢树香, 李仲飞. 带负债的连续时间最优资产组合选择[J]. 系统科学与数学, 2007, 27(6): 801-810.
XIE S X, LI Z F. Continuous-time optimal portfolio selection with liability [J]. Journal of Systems Science and Mathematical Sciences, 2007, 27(6): 801-810.
吴倩. 随机波动下的确定缴费型养老金投资问题[D]. 天津:天津大学, 2014.
WU Q. Optimal investment for defined contribution plan pension under the stochastic volatility [D]. Tianjin: Tianjin University, 2014.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构