1.暨南大学信息科学技术学院,广东 广州 510632
2.武汉纺织大学数学与计算机学院,湖北 武汉 430073
杨航(1995年生),女;研究方向:偏微分方程;E-mail: yhang918@stu2018.jnu.edu.cn
马璇(1980年生),女;研究方向:偏微分方程;E-mail: xma@wtu.edu.cn
纸质出版日期:2020-11-25,
收稿日期:2019-10-08,
扫 描 看 全 文
杨航,刘莉萍,马璇.有限管道上非截断Boltzmann方程解的性态研究[J].中山大学学报(自然科学版),2020,59(06):136-147.
YANG Hang,LIU Liping,MA Xuan.The non-cutoff Boltzmann equation in a finite channel[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):136-147.
杨航,刘莉萍,马璇.有限管道上非截断Boltzmann方程解的性态研究[J].中山大学学报(自然科学版),2020,59(06):136-147. DOI: 10.13471/j.cnki.acta.snus.2019.10.08.2019B097.
YANG Hang,LIU Liping,MA Xuan.The non-cutoff Boltzmann equation in a finite channel[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):136-147. DOI: 10.13471/j.cnki.acta.snus.2019.10.08.2019B097.
Boltzmann碰撞算子之间的相互作用以及方程在边界处潜在的奇性,使得在
<math id="M1"><mtext> </mtext><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi><mo>
</mo><mi>v</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msubsup><mtext> </mtext></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490374&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490372&type=
5.92666674
3.47133350
框架下,获得整体解比较困难。文章关于空间变量
<math id="M2"><mtext> </mtext><mi>x</mi><mtext> </mtext></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490393&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490391&type=
2.70933342
2.28600001
引入函数空间
<math id="M3"><mtext> </mtext><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msubsup><msubsup><mrow><mi>H</mi></mrow><mrow><mover><mrow><mi>x</mi></mrow><mo stretchy="true">¯</mo></mover></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490376&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490395&type=
8.46666718
4.31799984
,在inflow边界条件下研究了非截断Boltzmann方程在有限管道中解的全局存在唯一性、大时间行为以及解的正则性传播。
It’s very difficult to establish the global existence in the framework of
<math id="M4"><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi><mo>
</mo><mi>v</mi></mrow><mrow><mi mathvariant="normal">∞</mi></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490379&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490378&type=
4.65666676
4.06400013
due to the interaction between collision operators and the underlying singularity at the boundary. In this paper, we construct a global and unique solution in a new function space
<math id="M5"><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msubsup><msubsup><mrow><mi>H</mi></mrow><mrow><mover><mrow><mi>x</mi></mrow><mo stretchy="true">¯</mo></mover></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490397&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49490380&type=
8.72066689
4.48733330
for the non-cutoff Boltzmann equation with inflow boundary condition in a finite channel. Moreover, we also obtain the large-time behavior and the propagation of the regularity of the solution.
非截断的Boltzmann方程能量估计inflow边界条件
non-cutoff Boltzmann equationenergy estimateinflow boundary condition
CERCIGNANI C. Existence and uniqueness in the large for Boundary value problems in kinetic theory [J]. Journal of Mathematical Physics, 1967, 8(8): 1653-1656.
CERCIGNANI C. Existence, uniqueness, and convergence of the solutions of models in kinetic theory [J]. Journal of Mathematical Physics, 1968, 9(4): 633-639.
PAO Y P. Boundary‐value problems for the linearized and weakly nonlinear Boltzmann equation [J]. Journal of Mathematical Physics, 1967, 8(9): 1893-1898.
ESPOSITO R, LEBOWITZ J L, MARRA R. Hydrodynamic limit of the stationary Boltzmann equation in a slab [J]. Communications in Mathematical Physics, 1994, 160(1): 49-80.
ESPOSITO R, LEBOWITZ J L, MARRA R. The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation [J].Journal of Statistical Physics, 1995, 78(1/2): 389-412.
SHIZUTA Y, ASANO K. Global solutions of the Boltzmann equation in a bounded convex Domain [J]. Proc Japan Acad Ser A Math Sci, 1977, 53(1): 3—5.
VIDAV I. Spectra of perturbed semigroups with applications to transport theory [J]. Journal of Mathematical Analysis and Applications, 1970, 30(2): 264-279.
UKAI S. Solutions of the Boltzmann equation [J]. Studies in Mathematics and its Applications, 1986, 18: 37-96.
HAMDACHE K. Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions [J]. Archive for Rational Mechanics and Analysis, 1992, 119(4): 309-353.
CERCIGNANI C. On the initial-boundary value problem for the Boltzmann equation [J]. Archive for Rational Mechanics and Analysis, 1992, 116(4): 307-315.
GUO Y. Decay and continuity of the Boltzmann equation in bounded Domains [J]. Archive for Rational Mechanics and Analysis, 2010, 197(3): 713-809.
ESPOSITO R, GUO Y, KIM C, et al. Non-isothermal boundary in the Boltzmann theory and Fourier law [J]. Communications in Mathematical Physics, 2013, 323(1): 177-239.
BRIANT M, GUO Y. Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions [J]. Journal of Differential Equations, 2016, 261(12): 7000-7079.
KIM C, LEE D. The Boltzmann equation with specular boundary condition in convex domains [J]. Comm. Pure Appl Math, 2018, 71: 411-504.
GUO Y. Decay and continuity of the Boltzmann equation in bounded domains [J]. Archive for Rational Mechanics and Analysis, 2010, 197(3): 713-809.
LIU S Q, YANG X. The initial boundary value problem for the Boltzmann equation with soft potential [J]. Archive for Rational Mechanics and Analysis, 2017, 223(1): 463-541.
DUAN R J, WANG Y. The Boltzmann equation with large-amplitude initial data in bounded domains [J]. Advances in Mathematics, 2019, 343: 36-109.
GUO Y, LIU S Q. The Boltzmann equation with weakly inhomogeneous data in bounded domain [J]. Journal of Functional Analysis, 2017, 272(5): 2038-2057.
ESPOSITO R, GUO Y, KIM C, et al. Stationary solutions to the Boltzmann equation in the Hydrodynamic limit [J]. Annals of PDE, 2018, 4(1): 1-119.
DUAN R J, LIU S Q. Compressible Navier-Stokes approximation for the Boltzmann equation in bounded domains[EB/OL]. (2018-06-26)[2020-08-20]. https://arxiv.org/abs/1806.09796https://arxiv.org/abs/1806.09796.
GUO Y, HWANG H J, JANG J W, et al. The Landau equation with specular reflection boundary condition[EB/OL].(2019-05-01) https://arxiv.org/abs/1905.00173https://arxiv.org/abs/1905.00173.
DUAN R J, LIU S Q, SAKAMOTO S, et al. Global mild solutions of the Landau and non-cutoff Boltzmann equations[EB/OL]. (2019-04-27) https://arxiv.org/abs/1904.12086https://arxiv.org/abs/1904.12086.
GUO Y, KIM C, TONON D, et al. Regularity of the Boltzmann equation in convex domains [J]. Inventiones Mathematicae, 2017, 207(1): 115-290.
ALEXANDRE R, MORIMOTO Y, UKAI S, et al. The Boltzmann equation without angular cutoff in the whole space: I, global existence for soft potential [J]. Journal of Functional Analysis, 2012, 262(3): 915-1010.
GRESSMAN P T, STRAIN R M. Global classical solutions of the Boltzmann equation without angular cut-off [J]. Journal of the American Mathematical Society, 2011, 24(3): 771-847.
DUAN R J, LIU S Q, YANG T, et al. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials [J]. Kinetic Theory and Related Models, 2013, 6(1): 159-204.
FAN Y, LEI Y, LIU S Q. The non-cutoff Vlasov-Maxwell-Boltzmann system with weak angular singularity [J]. Science China Mathematics, 2018, 61(1): 111-136.
ALEXANDRE R, MORIMOTO Y, UKAI S, et al. Regularizing effect and local existence for the non-cutoff Boltzmann equation [J]. Archive for Rational Mechanics and Analysis, 2010, 198(1): 39-123.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构