武汉理工大学土木工程与建筑学院,湖北 武汉 430070
李超(1994年生),男;研究方向:结构地震响应分析及减震设计;E-mail:zhfwzx@whut.edu.cn
甘耀威(1996年生),男;研究方向:结构健康监测、有限元模型修正;E-mail:644429804@qq.com
纸质出版日期:2021-05-25,
网络出版日期:2020-09-16,
收稿日期:2019-09-27,
录用日期:2019-10-31
扫 描 看 全 文
李超,甘耀威,秦世强.铅芯橡胶支座对梁拱组合结构的减震效果研究[J].中山大学学报(自然科学版),2021,60(03):138-146.
LI Chao,GAN Yaowei,QIN Shiqiang..Research on shock absorption effect of lead rubber bearings on beam-arch composite structure[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):138-146.
李超,甘耀威,秦世强.铅芯橡胶支座对梁拱组合结构的减震效果研究[J].中山大学学报(自然科学版),2021,60(03):138-146. DOI: 10.13471/j.cnki.acta.snus.2019.09.27.2019B094.
LI Chao,GAN Yaowei,QIN Shiqiang..Research on shock absorption effect of lead rubber bearings on beam-arch composite structure[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):138-146. DOI: 10.13471/j.cnki.acta.snus.2019.09.27.2019B094.
以太原市中南环桥为工程背景,介绍了铅芯橡胶减隔震支座的布置形式与力学特性参数计算方法,研究了不同铅芯截面面积、硬化比和隔震支座尺寸对连续梁拱组合结构拱肋控制截面的减震效果。结果表明:铅芯橡胶支座能有效降低主拱肋内力响应和位移响应。不同铅芯截面面积、硬化比和隔震支座尺寸下主拱肋各控制截面的最大位移隔震率介于35.8% ~ 54.7%之间,最大内力隔震率介于32.3% ~ 64.4%之间;不同力学特征参数对该桥的减震效果不同,相比于硬化比和隔震支座尺寸,铅芯直径对结构隔震率起更大作用;由于隔震支座的布置形式和原始设计支座的存在,在结构位移限值受到限制的同时拱脚内力隔震率最小值仅为4.8%;其他力学特性参数一致且铅芯直径
<math id="M1"><mi>D</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51146757&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51146784&type=
2.11666679
2.28600001
=180 mm、硬化比
<math id="M2"><mi>α</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51146805&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51146790&type=
1.86266661
2.28600001
=0.154、支座直径为1 200 mm时结构减震效果最佳。
To solve the most unfavorable seismic response of arch ribs during seismic excitation of continuous beam-arch composite structures and reduce the peak value of structural response, this paper introduces the layout and mechanical parameters of lead rubber anti-seismic bearing with the background of Nanzhonghuan Bridge in Taiyuan City. The calculation method is used to analyze the damping effect of the cross-section area, hardening ratio and isolation bearing size of the continuous beam-arch combination structure. The results show that the lead rubber bearing can effectively reduce the internal force response and displacement response of the main arch rib. The maximum displacement isolation ratio of each control section of the main arch rib is different between 35.8%~54.7%, and the maximum internal isolation is between 32.3%~64.4% under different lead core cross-sectional areas, different hardening ratios and different isolation bearing sizes. Different mechanical characteristic parameters have various damping effects on the bridge. Compared with the hardening ratio and the size of the isolation bearing, the lead core diameter plays a greater role in the structural isolation ratio; due to the arrangement of the isolation bearing and the original design bearing, the existence of the structural displacement limit is limited, while the minimum internal vibration isolation rate of the arch is only 4.8%; when other mechanical parameters are consistent and the lead core diameter
D
= 180 mm, the hardening ratio α = 0.154, the diameter of the support is 1 200 mm the best shock absorption effect.
连续梁拱组合结构铅芯橡胶支座力学特征参数减震设计
continuous beam arch combination structurelead rubber bearingmechanical characteristic parametersshock absorption design
黄海云,张俊平,刘爱荣,等.蝴蝶拱桥活载受力行为的试验研究[J].中山大学学报(自然科学版),2010,49(1):53-56+61.
HUANG H Y, ZHANG J P, LIU A R,et al. Experimental study on behavior of a Butterfly-Shape arch bridge under live load[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(1):53-56+61.
刘忠平,陈克坚,陈扬义.铁路大跨度连续梁拱组合桥结构参数研究[J].铁道标准设计,2016,60(5):42-47.
LIU Z P, CHEN K J, CHEN Y Y. Research on design parameters of railway long-span continuous beam and arch bridge[J].Railway Standard Design,2016,60(5):42-47.
杜骞,夏修身,孙学先.大跨度钢管混凝土拱桥非线性抗震性能研究[J].地震工程学报,2018,40(2):206-212.
DU Q, XIA X S, SUN X X. Nonlinear seismic behavior of long-span concrete-filled steel tubular arch bridges[J]. China Earthquake Engineering Journal,2018,40(2):206-212.
杨涛.连续梁拱组合体系桥梁地震反应分析[J].石家庄铁道大学学报(自然科学版),2014(4):13-18.
YANG T.Seismic analysis of arch-beam combination system of rigid frame bridge[J]. Joural of Shijiazhuang Tiedao University (Natural Science Edition), 2014(4):13-18.
申现龙,陈永祁,刘荷,等.Pushover方法在钢管混凝土拱桥抗震分析中应用[J].振动与冲击,2018,37(6):182-187.
SHEN X L,CHEN Y Q, LIU H, et al. Application of the Pushover method in the seismic analysis of CFST arch bridge[J].Journal of Vibration and Shock,2018,37(6):182-187.
高明,王美芹.中承式钢管橡胶混凝土拱桥抗震性能研究[J].安徽建筑大学学报,2018,26(4):25-31.
GAO M, WANG M Q. Study on seismic behavior of half-through RuCFST arch bridge[J].Journal of Anhui Jianzhu University,2018,26(4):25-31.
施成.大跨度连续钢桁架柔性拱桥空间地震响应分析及减隔震研究[D].兰州: 兰州交通大学,2018.
SHI C. Spatial Seismic response analysis and seismic isolation study of long span continuous steel truss flexible arch bridge[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
何磊.钢管混凝土系杆拱桥地震响应分析与减隔震技术研究[D].西安:长安大学,2018.
HE L. Seismic performance and isolation technology analysis on CFST tied arch bridges[D]. Xi'an:Chang'an University, 2018.
戴公连,汪禹.大跨度铁路连续梁拱组合桥地震响应及减震特性[J].华中科技大学学报(自然科学版),2015(7):19-23.
DAI G L, WANG Y. Seismic response and cushioning research of long-span railway continuous beam-arch bridge[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) ,2015(7):19-23.
LIU H, WANG P, CHEN R. Longitudinal seismic response of continuously welded track on railway arch bridges[J].Applied Sciences,2018,8(5):775.
XIN L, LI X, ZHANG Z, et al. Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions [J]. Engineering Structures, 2019(180):148-159.
WANG D, ZHANG Z, XU F, et al. A single-plane beam-arch hybrid bridge in china[J]. Structural Engineering International, 2015,25(1):106-109.
JIANG T, WANG H, ZHANG Z, et al. The disease and reinforcement of slanting cross shaped arch bridge [J]. Engineering Failure Analysis, 2018(94):447-457.
杨有福,刘敏.格构式钢管混凝土构件抗震性能研究进展[J].中国公路学报,2017,30(12):10-20.
YANG Y F, LIU M. Progress of research on seismic behavior of concrete-filled steel tube latticed members[J]. China Journal of Highway and Transport,2017,30(12):10-20.
禹奇才,刘爱荣,唐潘,等.大跨度拱桥随机地震响应分析[J].中山大学学报(自然科学版),2011,50(4):32-36.
YAN Q C,LIU A R,TANG P, et al. Random seismic response analysis of long-span arch bridge[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2011,50(4):32-36.
梁意,肖承波,吴体,等.基于建筑规范反应谱的人工地震波合成及其应用[J].四川理工学院学报(自然科学版),2016,29(5):83-87.
LIANG Y, XIAO C B, WU T, et al. Synthesis and application of simulated earthquake waves based on building design response spectrum[J]. Journal of Sichuan University of Science and Engineering(Natural Sicence Edition) ,2016,29(5):83-87.
黄勇,张良,车泽鑫,等.多铅芯橡胶支座水平力学性能研究[J].土木工程学报,2018,51(S2):54-61+91.
HUANG Y, ZHANG L, CHE Z X, et al. Study on the horizontal mechanical properties of multi-core lead rubber bearings[J].China Civil Engineering Journal,2018,51(S2):54-61+91.
日本道路协会.《道路桥示方书·同解说》[S].日本道路协会, 2014.
Japan Road Association.Specifications for Highway Bridges [S].Japan Road Association, 2014.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构