新疆师范大学地理科学与旅游学院/新疆干旱区湖泊环境与资源实验室,新疆 乌鲁木齐 830054
赵慧(1994年生),女;研究方向:干旱区土壤资源变化及其遥感应用;E-mail:ziyuhe528@163.com
李新国(1971年生),男;研究方向:干旱区土壤资源变化及其遥感应用;E-mail:onlinelxg@sina.com
纸质出版日期:2020-07-20,
收稿日期:2019-09-20,
扫 描 看 全 文
赵慧,李新国,靳万贵等.博斯腾湖西岸湖滨绿洲土壤含盐量高光谱估算[J].中山大学学报(自然科学版),2020,59(04):56-63.
ZHAO Hui,LI Xinguo,JIN Wangui,et al.Hyperspectral estimation of soil salt content in lake oasis on the west bank of Bosten lake[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):56-63.
赵慧,李新国,靳万贵等.博斯腾湖西岸湖滨绿洲土壤含盐量高光谱估算[J].中山大学学报(自然科学版),2020,59(04):56-63. DOI: 10.13471/j.cnki.acta.snus.2019.09.20.2019D037.
ZHAO Hui,LI Xinguo,JIN Wangui,et al.Hyperspectral estimation of soil salt content in lake oasis on the west bank of Bosten lake[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):56-63. DOI: 10.13471/j.cnki.acta.snus.2019.09.20.2019D037.
以博斯腾湖西岸湖滨绿洲土壤盐分及其对应的高光谱数据为研究对象,对原始光谱反射率(
R
)进行均方根(
<math id="M1"><mroot><mrow><mi>R</mi></mrow><mrow/></mroot><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49497696&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49497693&type=
6.68866634
3.72533321
、对数(lg
R)
、倒数(1/
R)
、对数倒数(1/lg
R
)变换,引入分数阶微分对变换的光谱反射率进行0~2内的微分预处理,通过显著性检验优选特征波段,并利用特征波段进行偏最小二乘回归的建模和验证。结果表明:1)通过显著性检验较多的特征波段是:1/
R
为691个波段,比通过原始波段多226个波段;且随着阶数的增加,在各阶数中通过显著性检验的波段数量呈先增加后减少的趋势;通过数量较多的特征波段是1/
R
的0.4阶和0.6阶,分别为145、150;2)原始光谱反射率的相关性极大值绝对值是:2阶为0.53,其他4种数学变换的相关性极大值绝对值比
R
高0.11~0.16,特征波段主要集中在600~1 000 nm和2 020~2 330 nm;3)在原始光谱反射率及其变换值的各分数阶微分利用偏最小二乘回归建模中,1/lg
R
的0.2阶建立的模型为最佳模型,
R
2
C
=0.78,RMSE
C
=1.56,
R
2
V
=0.63,RMSE
V
=1.44。
Taking the soil salinity and corresponding hyperspectral data of the lakeside oasis on the west bank of the Bosten Lake as the research object
the root mean square
R
logarithmic lg
R
reciprocal 1/
R
reciprocal 1/lg
R
were used to transform the original spectral reflectance. The fractional differentiation was introduced to perform differential preprocessing within 0-2 on the transformed spectral reflectance. The characteristic band through significance test was used to model and verify partial least squares regression. The results show that: 1) The characteristic bands that passed the significance test were mostly 1/
R
of 691 bands
which was 226 more bands than the original band R. With increasing orders
the number of bands that passed the significance test in each order showed a trend of increasing first and then decreasing. The characteristic bands that passed more were 0.4 and 0.6 orders of 1/
R
which were 145 and 150
respectively. 2) The absolute value of the correlation maximum value of the original spectrum
R
was 2nd order 0.53. The absolute value of the correlation maximum value of the other four mathematical transformations was 0.11-0.16
higher than
R
. The characteristic bands were mainly concentrated at 600-1 000 nm and 2 020-2 330 nm. 3) The fractional differential of the original spectral
R
the root mean square
R
the logarithm lg
R
the reciprocal 1/
R
and the logarithm reciprocal 1/lg
R
was modeled by partial least squares regression. The model established at 0.2th order of 1/lg
R
was the best one
with
R
2
C
=0.78,RMSE
C
=1.56,
R
2
V
=0.63,RMSE
V
=1.44.
分数阶微分土壤含盐量光谱变换偏最小二乘回归高光谱估算
fractional differentialsoil salinityspectral transformationpartial least squares regression methodshyperspectral estimation
SUN X, GAO Y, WANG D, et al. Stoichiometric variation of halophytes in response to changes in soil salinity[J]. Plant Biology, 2 017, 19(3): 360-367.
JIN P B, LI P H, WANG Q, et al. Developing and applying novel spectral feature parameters for classifying soil salt types in arid land[J]. Ecological Indicators, 2015, 54: 116-123.
YANG L, BIAN X, YANG R, et al. Assessment of organic amendments for improving coastal saline soil[J]. Land Degradation & Development, 2018, 29(9): 3204-3211.
彭翔,胡丹,曾文治,等.基于EPO-PLS回归模型的盐渍化土壤含水率高光谱反演[J].农业工程学报,2016,32(11):167-173.
PENG X, HU D, ZENG W Z, et al. Estimating soil moisture from hyperspectral in saline soil based on EPO-PLS regression[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 167-173.
吴一全,周杨,龙云淋.基于自适应参数支持向量机的高光谱遥感图像小目标检测[J].光学学报,2015,35(9):322-331.
WU Y Q,ZHOU Y, LONG Y L. Small target detection in hyper spectral remote sensing image based on adaptive parameter SVM [J]. Acta Optica Sinica,2015,35(9):0928001.
SRIVASTAVA R, SETHI M, YADAV R K, et al. Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana, India[J]. Journal of the Indian Society of Remote Sensing, 2017,45(2): 307-315.
CHEN K, LI C, TANG R. Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra[J]. Industrial Crops and Products, 2017, 108: 831-839.
陈思明,邹双全,毛艳玲,等.土壤光谱重建的湿地土壤有机质含量多光谱反演[J].光谱学与光谱分析,2018,38(3):912-917.
CHEN S M, ZOU S Q, MAO Y L, et al. Inversion of soil organic matter content in wetland using multispectral data based on soil spectral reconstruction[J]. Spectroscopy and Spectral Analysis,2018,38(3):912-917.
ZHANG D, TASHPOLAT T, DING L, et al. Quantitative estimating salt content of saline soil using laboratory hyperspectral data treated by fractional derivative[J]. Journal of Spectroscopy , 2016(1):1-11.
KOTHA P, KRISHNA B T. Comparative study of fractional order derivative based image enhancement techniques[J].International Journal of Research in Computer and Communication Technology,2014,3(2) : 231-235.
张文文,杨可明,夏天,等.光谱分数阶微分与玉米叶片重金属铜含量的相关性分析[J].科学技术与工程,2017,17(25): 33-38.
ZHANG W W, YANG K M, XIA T, et al. Correlation analysis on spectral fractional-order differential and the content of heavy metal copper in corn leaves[J]. Science Technology and Engineering,2017,17(25):33-38.
TARASOV V E. On chain rule for fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1/2/3): 1-4.
亚森江·喀哈尔,杨胜天,尼格拉·塔什甫拉提,等.基于分数阶微分优化光谱指数的土壤电导率高光谱估算[J].生态学报,2019,39(19): 7237-7248.
Sh J·Ka HA ERY, YANG S T, L·TA SHEN FU LA TIN G, et al. Hyperspectral estimation of soil electrical conductivity based on fractional order differentially optimised spectral indices[J].Acta Ecologica Sinica,2019,39(19): 7237-7248.
吾木提·艾山江,买买提·沙吾提,马春玥.基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J].激光与光电子学进展,2019,56(15):251-259.
T·AI SHAN JIANGW M, T·SHA WU TIM M, MA C Y. Hyperspectral estimation of wheat leaf water content using fractional differentials and successive projection algorithm-back propagation neural network[J]. Laser & Optoelectronics Progress,2019, 56(15):251-259.
蒋明,郭云开,钱佳,等.不同采样间隔下分数阶微分对土壤重金属高光谱数据的影响[J].测绘通报,2018(10):37-40+45.
JIANG M, GUO Y K, QIAN J, et al. Effect of fractional differential on soil hyper metallic hyperspectral data at different sampling intervals[J]. Bulletin of Surveying and Mapping,2018(10):37-40+45.
TIAN A, ZHAO J, XIONG H, et al. Application of fractional differential calculation in pretreatment of saline soil hyperspectral reflectance data[J]. Journal of Sensors,2018, DOI: 10.1155/2018/8017614http://dx.doi.org/10.1155/2018/8017614.
徐继刚,冯新泸,管亮,等.分数阶微分在红外光谱数据预处理中的应用[J].化工自动化及仪表,2012,39(3):347-351.
XU J G, FENG X L, GUAN L, et al. Fractional differential application in reprocessing infrared spectral data[J]. Control and Instruments in Chemical Industry,2012,39(3):347 -351.
田安红,熊黑钢,赵俊三,等.分数阶微分对盐渍土野外光谱预处理精度提升的机理分析[J].光谱学与光谱分析,2019, 39(8):2495-2500.
TIAN A H, XIONG H G, ZHAO J S, et al. Mechanism improvement for pretreatment accuracy of field spectra of saline soil using fractional differential algorithm[J]. Spectroscopy and Spectral Analysis,2019, 39(8):2495-2500.
李志,李新国,毛东雷,等.博斯腾湖西岸湖滨带不同植被类型土壤剖面盐分特征分析[J].西北农业学报,2018,27(2): 260-268.
LI Z, LI X G, MAO D L, et al. Analysis of salinity characteristics of different vegetation types in soil profile in western side of Bosten lake of Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018, 27(2):260-268.
梁东,李新国,阿斯耶姆·图尔迪,等.博斯腾湖西岸湖滨带土壤剖面盐分特征分析[J].干旱地区农业研究,2014,32(4): 151-158.
LIANG D, LI X G, TU ER DI·A S Y M, et al. Salinity characteristics of soil profiles in the western lakeside of Bosten Lake,Xinjiang[J]. Agricultural Research in the Arid Areas,2014, 32(4):151-158.
刘克,赵文吉,郭逍宇,等.基于地面实测光谱的湿地植物全氮含量估算研究[J].光谱学与光谱分析,2012,32(2):465-471.
LIU K, ZHAO W J, GUO X Y, et al. Estimation total nitrogen content in wetland vegetation based on measured reflectance spectra[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 465-471.
张贤龙,张飞,张海威,等.基于光谱变换的高光谱指数土壤盐分反演模型优选[J].农业工程学报,2018,34(1):110-117.
ZHANG X L, ZHANG F, ZHANG H W,et al. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J]. Transactions of the Chinese Society of Agricultural Engineering,2018, 34(1):110-117.
林世敏,许传炬.分数阶微分方程的理论和数值方法研究[J].计算数学, 2016, 38(1):1-24.
LIN S M, XU C J. Theoretical and numerical investigation of fractional differential equations[J]. Mathematica Numerica Sinica, 2016, 38(1):1-24.
杨柱中,周激流,晏祥玉,等.基于分数阶微分的图像增强[J].计算机辅助设计与图形学报,2008,20(3):343-348.
YANG Z Z , ZHOU J L, YAN X Y, et al. Image enhancement based on fractional differentials[J]. Journal of Computer-Aided Design & Computer Graphics,2008,20(3):343-348.
张绍阳,解源源,张鑫,等.基于分数阶微分的模糊交通视频图像增强[J].光学精密工程,2014,22(3):779-786.
ZHANG SH Y, XIE Y Y, ZHANG X, et al. Enhancement of fuzzy traffic video images based on fractional differential[J].Optics and Precision Engineering,2014,22(3):779-786.
LIU K, CHEN X, LI L, et al. A consensus successive projections algorithm-multiple linear regression method for analyzing near infrared spectra[J]. Analytica Chimica Acta, 2015, 858(1):16-23.
李志,李新国,刘彬,等.博斯腾湖西岸湖滨带土壤盐分高光谱反演[J].扬州大学学报(农业与生命科学版),2019,40(2): 33-39.
LI ZH, LI X G, LIU B, et al. Hyperspectral inversion of soil salinity in the western lakeside of Bosten lake[J]. Journal of Yangzhou University (Agricultural and Life Science Edition),2019,40(2):33-39.
王圆圆,李贵才,张立军,等.利用偏最小二乘回归从冬小麦冠层光谱提取叶片含水量[J].光谱学与光谱分析,2010, 30(4):1070-1074.
WANG Y Y, LI G C, ZHANG L J, et al. Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 1070-1074.
SONG L, JIAN J, TAN D J, et al. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China[J]. International Journal of Applied Earth Observation and Geoinformation,2015,34: 1-9.
0
浏览量
1
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构