重庆财经学院,重庆 400055
豆中丽(1983年生),女;研究方向:常微分方程与动力系统;E-mail:1343639662@qq.com
纸质出版日期:2021-05-25,
网络出版日期:2020-11-05,
收稿日期:2019-09-20,
录用日期:2020-09-18
扫 描 看 全 文
豆中丽.具有年龄结构的MSIQRS传染病模型的稳定性分析[J].中山大学学报(自然科学版),2021,60(03):159-166.
DOU Zhongli.Stability analysis of MSIQRS epidemiological model with age structure[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):159-166.
豆中丽.具有年龄结构的MSIQRS传染病模型的稳定性分析[J].中山大学学报(自然科学版),2021,60(03):159-166. DOI: 10.13471/j.cnki.acta.snus.2019.09.20.2019A071.
DOU Zhongli.Stability analysis of MSIQRS epidemiological model with age structure[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):159-166. DOI: 10.13471/j.cnki.acta.snus.2019.09.20.2019A071.
讨论一类具有年龄结构MSIQRS传染病模型,得出基本再生数
<math id="M1"><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147669&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147667&type=
3.04800010
3.21733332
和接种再生数
<math id="M2"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147671&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147681&type=
6.60400009
2.96333337
的表达式,证明了当
<math id="M3"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147687&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147685&type=
11.93799973
2.96333337
时,无病平衡点局部渐近稳定;当
<math id="M4"><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147692&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147689&type=
8.72066593
3.21733332
时,无病平衡点全局渐近稳定性;当
<math id="M5"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo><mo>></mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147708&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147694&type=
11.93799973
2.96333337
时,无病平衡点不稳定,此时系统存在地方病平衡点,并给出了地方病平衡点局部渐近稳定的条件;同时用基本再生数的表达式进一步解释了接种在控制消除传染病中的作用。
A class of MSIQRS epidemic models with age structure was discussed, and the expressions of basic reproductive number
<math id="M6"><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147709&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51147698&type=
3.47133350
3.72533321
and the reproductive number with vaccination
<math id="M7"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149215&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149230&type=
7.70466709
3.47133350
were derived. It was proved that when
<math id="M8"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149187&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149199&type=
13.88533401
3.47133350
, the disease-free equilibrium was locally asymptotically stable at that time.when
<math id="M9"><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">0</mn></mrow></msub><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149218&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149204&type=
9.99066734
3.80999994
,the disease-free equilibrium was globally asymptotically stable. When
<math id="M10"><mi>R</mi><mo stretchy="false">(</mo><mi>φ</mi><mo stretchy="false">)</mo><mo>></mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149221&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=51149207&type=
13.88533401
3.47133350
, the disease-free equilibrium is unstable. And there exists only endemic equilibrium state, and the conditions of local asymptotic stability of the endemic equilibrium point are given. The expression of basic reproductive number is used to further explain the role of isolation in the control of eliminating infectious diseases.
年龄结构接种基本再生数稳定性
age structurevaccinationbasic reproductive numberstability
马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京: 科学出版社,2004.
魏晓丹.复杂网络上具出生和死亡的一类分数阶SIR模型的全局渐近稳定性[J].中山大学学报(自然科学版),2017,56(4): 20-22+27.
WEI X D.Global stability of a fraction order SIR model with birth and death on complex networks [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2017,56(4): 20-22+27.
杨俊仙,于淑妹.一类具有潜伏感染细胞的时滞病毒感染模型[J].中山大学学报(自然科学版),2020,59(4): 158-167.
YANG J X,YU S M.A delayed virus infection model with latent infection cells [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(4): 158-167.
梁雨琴,贾云锋.具有时滞的肿瘤免疫模型的稳定性与Hopf分支[J].中山大学学报(自然科学版),2020,59(2):28-33.
LIANG Y Q,JIA Y F.Stability and Hopf bifurcation of a tumor immune model with time delay [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(2): 28-33.
高宏伟,郝祥晖,陈清江.一类具有非线性传染率、隔离率的SIRS传染病模型解的存在性研究[J].四川师范大学学报(自然科学版),2012,35(4): 482-489.
GAO H W,HAO X H,CHEN Q J.Study on the existence of solution to an SIRS epidemic model with nonlinear contact and screening rates [J].Journal of Sichuan Normal University(Natural Science),2012,35(4): 482-489.
王娟,何俊杰,李学志.一类具有接种疫苗的年龄结构传染病模型分析[J].系统科学与数学,2015,35(11): 1358-1366.
WANG J, HE J J,LI X Z.Analysis of an age-structured epidemic model with vaccination [J]. Journal of Systems Science and Mathematical Sciences,2015,35(11): 1358-1366.
LI X Z, LIU J X, Stabiliy of an age-structured epidemiological model for hepatitis [J].J Appl Math Comput,2018,27(12): 159-173.
ZHANG X B, HUO H F, XIANG H. Dynamics of an SIQR epideminsics model with uranine and pulse vaccination [J].Appl Math Comput,2014,243(15): 546-558.
王改霞,刘纪轩,李学志.年龄结构SIQR传染病模型及稳定性[J].应用数学学报,2018,41(6): 777-787.
WANG G X,LIU J X,LI X Z.Stability of age-structured SIQR epidemiological model [J]. Acta Mathematicae Applicatae Sinica,2018,41(6): 777-787.
HETHCOTE H. The mathermatics of infection diseases [J].SIAM Review,2010,42(15): 599-653
GRIPENBERG G, LONDEN S O, STAFFANS O. Volterra intergral and funcional equaions [M].Cambridge:Cambridge Univ Press,1990.
郑维行,王声望.实变函数与泛函分析(第一册)[M]. 北京:高等教育出版社,1989.
STOER J, WITZGALL C. Convexity and optimization in finite dimension [M].Berlin:Spinger,1970.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构