郑州航空工业管理学院数学学院,河南 郑州 450015
毛北行 (1976年生),男;研究方向:分数阶系统混沌同步;E-mail:bxmao329@163.com
纸质出版日期:2020-07-20,
收稿日期:2019-09-17,
扫 描 看 全 文
毛北行.分数阶整数阶多混沌系统的自适应滑模同步[J].中山大学学报(自然科学版),2020,59(04):128-133.
MAO Beixing.Self-adaptive sliding mode synchronization of fractional-order and integer-order uncertain multi-chaotic systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):128-133.
毛北行.分数阶整数阶多混沌系统的自适应滑模同步[J].中山大学学报(自然科学版),2020,59(04):128-133. DOI: 10.13471/j.cnki.acta.snus.2019.09.17.2019B089.
MAO Beixing.Self-adaptive sliding mode synchronization of fractional-order and integer-order uncertain multi-chaotic systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):128-133. DOI: 10.13471/j.cnki.acta.snus.2019.09.17.2019B089.
利用自适应滑模方法研究具有不确定性和外扰下一类分数阶整数阶多混沌系统的同步。通过设计滑模函数及控制律,获得整数阶及分数阶多混沌系统自适应滑模同步的充分条件,并用数值仿真对所取得的结果进行了验证。
In this paper
we study synchronization of a class of fractional-order and integer-order multi-chaotic systems with uncertainties models and external disturbances using self-adaptive sliding mode approach. And the sufficient conditions were arrived for fractional-order and integer- order multi-chaotic systems getting self-adaptive sliding mode synchronization by design sliding mode functions and control laws. Numerical simulation demonstrate the correctness of the conclusion.
自适应高阶滑模多混沌
self-apaptivehigh-ordersliding modemulti-chaotic
LIU Y, GUO B, PARK J, et al. Non-fragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J].IEEE Trans Neural Network Learn Systems 2016. DOI: 10.1109/TNNLShttp://dx.doi.org/10.1109/TNNLS,2016,26(8):709-716 .
HAN X, WU H, FANG B. Adaptive exponential synchronization of memoristive neural networks with mixed time-varying delays [J]. Neurocomputing ,2016,20(3):40–50 .
CHEN C, LI L, PENG H, et. al . Finite-time synchronization of memoristor-based neural networks with mixed delays [J].Neurocomputing,2017,235(16):83–89 .
TAO L, CHEN Q, NAN Y. Disturbance-observer basedadaptive control for second-order nonlinear systems using chattering-free reaching law[J].International Journal of Control, Automation and Systems, 2019,17(2):356-369.
LIN C. A four-dimensional hyperchaotic finance system and its control problems[J].Journal of Control Science & Engineering, 2018,23( 6): 1-12.
YANG Y G, XU W, SUN Y H, et al, Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation[J].Communications in Nonlinear Science & Numerical Simulation, 2017,42(6): 62-72.
WU Z, SHI P, SU H , et al. Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling[J]. IEEE Trans Neural Netw Learn Syst, 2012 ,23(6):1368–1376 .
LIU Y, GUO B, PARK J, et al. Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J]. IEEE Trans Neural Netw Learn Syst 2016. DOI: 10.1109/TNNLS.2016,26(8):709-716 .
HAN X, WU H, FANG B. Adaptive exponential synchronization of mem- ristive neural networks with mixed time-varying delays[J]. Neurocomputing, 2016,20(3):40-50 .
CHEN C , LI L , PENG H , et al. Finite-time synchronization of memristor-based neural networks with mixed delays [J].Neurocomputing, 2017,235(16):83-89 .
HAMAMC I, KOLKSAL M. Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems.[J]. Comput Math Appl, 2010,15(2):1267-1278.
MATOUK A. Chaos feedback and synchronization of fractional-order modified autonomous Van der pol-Duffling circuit[J]. Commun Nonlinear Sci Numer Simul, 2011,16(5):975-986.
SHAHIRI M,GHADRI R,RANJBAR N,et.al. Chaotic fractional-order coulletsystem:synchronization and control approach[J]. Commun Nonlinear Sci Numer Simul, 2010,15(6):665-674.
MAO B X. Four methods for sliding mode synchronization of fractional-order new hyperchaotic system[J].Paper Asia,2018,12(5):118-122.
付景超,张中华.超混沌Bao系统状态线性反馈控制及自适应控制[J].控制与决策,2016,31(9):1707-1710.
FU J C ,ZHANG Z H. Linear state feedback control and adaptive backstepping control of hyperchaotic Bao system[J].Control and Decision,2016,31(9):1707-1710.
毛北行,李巧利.一类分数阶Genesio-Tesi系统的滑模混沌同步[J].中山大学学报(自然版),2017,56(2):76-79.
MAO B X,LI Q L.Sliding mode chaos synchronization of a class of fractional-order Genesio-Tesi systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni ,2017,56(2):76-79.
毛北行.基于一种新型趋近律的分数阶Duffling不确定系统的自适应滑模同步[J].中山大学学报(自然科学版),2017,56(4):64-67.
MAO B X.Self-adaptive sliding mode synchronization of fractional-order uncertainty Duffling systems based on a new reaching law[J].Acta Scientiarum Naturalium Universitatis Sunyatseni ,2017,56(4):64-67.
毛北行.分数阶Genesio-Tesi混沌系统的适应转移函数滑模同步方法[J].南京理工大学学报,2018,42(5):586-590.
MAO B X. Adaptive transfer function sliding mode synchronization method of fractional0order Genesio-Tesi chaotic system[J].Journal of Nanjing university of Science and Technology, 2018,42(5):586-590.
毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师范大学学报(自然科学版),2018,50(2):47-50.
MAO B X,ZHOU C Q.Terminal sliding mode synchronization of fractional-order uncertainty Duffling chaotic systems[J].Journal of Northeast Normal University(Natural Science Edition), 2018,50(2):47-50.
KHANAYU B,TYAGIART I. Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order Newton-Leipnik chaotic system[J].International Journal Dynamics Control,2018,53(6):1139-1149.
闫丽宏.广义分数阶Sprott-C混沌系统的有限时间滑模同步[J].吉林学报(理学版),2019,57(4):940-945.
YAN L H. Finite-time sliding mode synchronization of generalized fractional-order Sprott-C Chaotic systems[J]. Journal of Jilin University(Science Edition), 2019,57(4):940-945.
0
浏览量
1
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构