1.河南理工大学电气工程与自动化学院,河南 焦作 454000
2.煤炭安全生产河南省协同创新中心,河南 焦作 454000
3.河南理工大学能源科学与工程学院,河南 焦作 454000
乔美英(1976年生),女;研究方向:主要从事机器学习,故障诊断等;E-mail: qiaomy@hpu.edu.cn
纸质出版日期:2020-09-25,
收稿日期:2019-08-20,
扫 描 看 全 文
乔美英,闫书豪,兰建义等.基于VMD-TEO窗和DBiLSTM的早期轴承故障诊断[J].中山大学学报(自然科学版),2020,59(05):66-77.
QIAO Meiying,YAN Shuhao,LAN Jianyi,et al.Early bearing fault diagnosis based on VMD-TEO window function and DBiLSTM[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):66-77.
乔美英,闫书豪,兰建义等.基于VMD-TEO窗和DBiLSTM的早期轴承故障诊断[J].中山大学学报(自然科学版),2020,59(05):66-77. DOI: 10.13471/j.cnki.acta.snus.2019.08.20.2019B081.
QIAO Meiying,YAN Shuhao,LAN Jianyi,et al.Early bearing fault diagnosis based on VMD-TEO window function and DBiLSTM[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):66-77. DOI: 10.13471/j.cnki.acta.snus.2019.08.20.2019B081.
针对现代滚动轴承早期故障监测因数据量增大所带来的诊断困难问题,提出了基于变分模态分解(VMD)与TEO窗特征提取的深层双向长短记忆神经网络(DBiLSTM)轴承故障诊断方法。首先,利用改进果蝇算法优化的VMD-TEO窗函数,提取轴承振动信号的瞬时能量特征,构造具有时序特性的特征矩阵;其次,利用训练集对DBiLSTM模型进行学习以确定模型参数;最后,用测试集对模型进行验证,输出轴承状态识别结果。试验采用凯西西楚大学轴承故障数据集,结果表明:该方法在处理数据量较大的滚动轴承故障诊断问题时,能有效地对多种故障类型,不同损伤等级的滚动轴承振动信号进行识别。
Aiming at the problems caused by the data increase in the early fault monitoring of modern rolling bearings
a fault diagnosis model for deep bidirectional long and short memory neural network (DBiLSTM) based on variational mode decomposition (VMD) and TEO energy window was put forward. Firstly
the instantaneous energy characteristics of bearing vibration signals were extracted by the VMD-TEO window function that optimized by the improved fruit fly algorithm. Meanwhile
the characteristic matrix with time characteristic was constructed. Secondly
DBiLSTM network model was trained by using the training set to determine the model parameters. Finally
the trained model was applied in the test set to generate fault recognition results. The test used Case Western Reserve University bearing fault data set
and the results show that this method can effectively identify vibration signals of rolling bearings with various fault types and different damage levels when dealing with large amounts of data problems.
变分模态分解TEO能量窗函数深层双向长短记忆神经网络(DBiLSTM)轴承故障诊断
variational modal decompositionTEO energy window functionDBiLSTMbearing failure diagnosis
曹宏瑞,何正嘉,訾艳阳.高速滚动轴承力学特性建模与损伤机理分析[J].振动与冲击,2012, 31(19):134-140.
CAO H R, HE Z J, ZI Y Y. Modeling of a high-speed rolling bearing and its damage mechanism analysis[J]. Journal of Vibration & Shock, 2012, 31(19):134-140.
雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J].机械工程学报,2015,51(21):49-56.
LEI Y, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56.
田晶,王英杰,王志,等.基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J].仪器仪表学报,2018,39(7):144-151.
TIAN J, WANG Y J, WANG Z, et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 144-151.
XIAO Y, DONG F, DING E J, et al. Rolling bearing fault diagnosis using modified lfda and emd with sensitive feature selection[J]. IEEE Access, 2018, 6(99):3715-3730.
乔美英,刘宇翔,兰建义.基于VMD和马氏距离SVM的滚动轴承故障诊断[J].中山大学学报(自然科学版),2019,58(5):8-16.
QIAO M Y, LIU Y X, LAN J Y. Fault diagnosis method of rolling bearings based on VMD and mahalanobis distance SVM[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019,58(5):8-16.
徐元博,蔡宗琰,胡永彪,等. 强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用[J].振动工程学报,2018,31(3):513-522.
XU Y B, CAI Z Y, HU Y B, et al. A frequency-weighted energy operator and variational mode decomposition for bearing fault detection[J]. Journal of Vibration Engineering, 2018,31(3):513-522.
唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报, 2015, 49(5):73-81.
TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xian Jiaotong University, 2015, 49(5):73-81.
马增强,李亚超,刘政,等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016, 35(13):134-139.
MA Z Q, LI Y C, LIU Z, et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration & Shock, 2016, 35(13):134-139.
王新,闫文源.基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(18):252-256.
WANG X,YAN W Y. Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36(18):252- 256.
YILDIRIM Ö. A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification[J]. Computers in Biology & Medicine, 2018, 96:189-202.
李鹏,何帅,韩鹏飞,等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J].电网技术,2018,42(12): 4045-4052.
LI P, HE S, HAN P F, et al. Short term load forecasting of smart grid based on long short term memory recurrent neural networks in condition of real-time electricity price[J]. Power System Technology, 2018, 42(12): 4045-4052.
唐赛,何荇兮. 基于长短期记忆网络的轴承故障识别[J].汽车工程学报,2018,8(4):297-303.
TANG S,HE X X. Bearing fault identification based on long short-term memory networks[J]. Chinese Journal of Automotive Engineering, 2018,8(4):297-303.
KAISER J F. Some useful properties of Teager's energy operators[C]// IEEE International Conference on Acoustics. IEEE Computer Society, 1993.
ANGELINE P J, SAUNDERS G M, POLLACK J B. An evolutionary algorithm that constructs recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1994, 5(1):54-65.
GRAVES A. Long short-term memory[M]. Supervised Sequence Labelling with Recurrent Neural Networks. 2012.
LI W, NIE W, SU Y. Human action recognition based on selected spatio-temporal features via bidirectional LSTM[J]. IEEE Access, 2018, 6: 44211-44220.
LOPARO K A. Bearings vibration data set,case western reserve university[EB/OL].[2005-02-01]. http://www.eecs.cwru.edu/laboratory/bearing/download.htmhttp://www.eecs.cwru.edu/laboratory/bearing/download.htm.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构