1.中山大学应用力学与工程系,广东 广州 510006
2.中广核研究院有限公司,广东 深圳 518040
徐文兵( 1994 年生),男; 研究方向: 流体力学; E-mail: xuwb9@ mail2.sysu.edu.cn
姚清河( 1980 年生),男; 研究方向: 流体力学; E-mail: yaoqhe@ mail. sysu. edu. cn
纸质出版日期:2020-09-25,
收稿日期:2019-07-27,
扫 描 看 全 文
徐文兵,王国河,王生等.基于PSO-SVM算法的乐昌峡鹅公带滑坡体位移预测模型[J].中山大学学报(自然科学版),2020,59(05):57-65.
XU Wenbing,WANG Guohe,WANG Sheng,et al.Displacement prediction model of Egongdai landslide in Lechangxia based on PSO-SVM algorithms[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):57-65.
徐文兵,王国河,王生等.基于PSO-SVM算法的乐昌峡鹅公带滑坡体位移预测模型[J].中山大学学报(自然科学版),2020,59(05):57-65. DOI: 10.13471/j.cnki.acta.snus.2019.07.27.2019B071.
XU Wenbing,WANG Guohe,WANG Sheng,et al.Displacement prediction model of Egongdai landslide in Lechangxia based on PSO-SVM algorithms[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):57-65. DOI: 10.13471/j.cnki.acta.snus.2019.07.27.2019B071.
以乐昌峡鹅公带滑坡体作为研究对象,考虑日降雨量、渗压对边坡变形的影响,建立了BP、SVM、PSO-BP、PSO-SVM四种滑坡体变形预测模型。从乐昌峡安全检测系统导出近4年研究数据,筛选使用其中410组数据进行训练,取30组变形位移作为输出,分析后发现PSO-SVM模型为最佳模型。以PSO-SVM模型为研究对象,对粒子群算法迭代次数、种群规模、速度位置相关系数(
k
)等因素进行研究,得知三者分别为100、30、0.5时得到最优的PSO-SVM模型,此时的RMSE、MAPE、
R
2
分别为0.202 mm、0.589%、0.985。相对于大型有限元仿真软件、多元线性回归模型等传统方法,文章所提出的预测模型可以减少计算成本;在面对非线性问题时也能够获得更好的处理效果。
Taking Lechangxia Egongdai landslide as the research object
the influence of daily rainfall and osmotic pressure on slope deformation is considered. By establishing BP
SVM
PSO-BP
PSO-SVM four landslide body deformation prediction models
the research data of the last 4 years is derived from the Lechangxia safety inspection system
and 410 sets of data are used for training through screening
and 30 sets of deformation displacements are taken as an output
after analysis
the PSO-SVM model is found to be the accurate model. Taking the PSO-SVM model as the basic model
the factors such as the number of iterations of the particle swarm algorithm
the population size
and velocity position correlation coefficient (
k
) are studied
and the best PSO-SVM is obtained when the three are 100
30
and 0.5
respectively. In this model
the RMSE
MAPE
and
<math id="M1"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49494177&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49494176&type=
3.38666677
2.96333337
are 0.202 mm
0.589%
and 0.985
respectively. Compared with traditional methods such as large-scale finite element simulation software and multiple linear regression models
the prediction model proposed in this article can reduce the computational cost and obtain better processing results in the face of nonlinear problems. At the same time
it can reduce the lack of fitting accuracy caused by incomplete factor analysis.
鹅公带滑坡体位移预测PSO-SVM模型参数寻优
Egongdai landslidedisplacement predictionmodel of PSO-SVMparameter optimization
李明,曾金志. 基于ARIMA模型的大坝滑坡体表面位移监测分析预报[J]. 东华理工大学学报(自然科学版), 2016(S1): 17-20.
LI M, ZENG J Z. Monitoring, analysis and forecast of surface displacement of dam landslide based on ARIMA model [J]. Journal of East China University of Technology: Natural Science, 2016(S1): 17-20.
DAI F C, LEE CF, NGAI Y Y. Landslide risk assessment and management: an overview[J]. Engineering Geology, 2002,64(1): 65-87.
JIANG J W, EHRET D,XIANG W,et al. Numerical simulation of Qiaotou Landslide deformation caused by drawdown of the three gorges reservoir, China[J]. Environmental Earth Sciences, 2011, 62(2): 411-419.
LEE K T, HO J Y. Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation[J]. Journal of Hydrology, 2009,375(3): 489-497.
CHENG L,ZENG Z G,YAO W, et al. Multiple neural networks switched prediction for landslide displacement[J]. Engineering Geology, 2015,186: 91-99.
ZENGY,YAN E C,LI C F, et al. Application of multivariable time series based on RBF neural network in prediction of landslide displacement[C]// Proceedings of 2008 International Workshop on Chaos-Fractals Theories and Applications & the 9th International Conference for Young Computer Scientists,2008:15-20.
CAI Z L,XU W Y, MENG Y D, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology & the Environment, 2016,75(2): 637-646.
白航, 王伟竹,姚清河. 某水下机器人阻力特性的数值模拟[J].中山大学学报(自然科学版), 2018,57(1): 150-159.
BAI H,WANG W Z,YAO Q H. Numerical simulation of the resistance character of an underwater vehicle[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018,57(1): 150-159.
冯立文,姚清河,苏炜等人. 洪湾渔港工程潮流泥沙的输运特性[J]. 中山大学学报(自然科学版), 2019, 58(1): 56-64.
FENG L W,YAO Q H,SU W,et al.Transportation characteristic analysis of tidal current sediment in Hongwan fishing port[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019,58(1): 56-64.
李桥, 巨能攀, 黄健,等.基于EEMD与SE的IPSO-LSSVM耦合模型在坝肩边坡变形预测中的应用[J]. 长江科学院院报, 2019,36(12):47-53.
LI Q, JU N P, HUANG J, et al.A prediction method for abutment slope deformation based on IPSO-LSSVM model integrating ensemble empirical mode decomposition and sample entropy[J]. Journal of Yangtze River Scientific Research Institute, 2019,36(12):47-53.
魏博文,熊威,李火坤,等.融合混沌残差的大坝位移蛙跳式组合预报模型[J].武汉大学学报(信息科学版),2016,41(9):1272-1278.
WEI B W, XIONG W, LI H K, et al., Dam Deformation forecasting of leapfrog combined model merging residual errors of chaos[J]. Geomatics & Information Science of Wuhan University, 2016,41(9):1272-1278.
LIAN C,ZENG Z G,YAO W, et al. Displacement prediction model of landslide based on a modified ensemble;empirical mode decomposition and extreme learning machine[J]. Natural Hazards, 2013,66(2): 759-771.
彭令, 牛瑞卿, 吴婷. 时间序列分析与支持向量机的滑坡位移预测[J]. 浙江大学学报(工学版), 2013,47(9): 1672-1679.
PENG L,NIU R Q,WU T. Time series analysis and support vector machine for landslide displacement prediction[J]. Journal of Zhejiang University(Engineering Science),2013,47(9): 1672-1679.
ZHOU C,YIN K L,CAO Y, et al.A novel method for landslide displacement prediction by integrating advanced computational intelligence algorithms[J]. Scientific Reports, 2018,8(1):47-53.
易庆林, 曾怀恩,黄海峰. 利用BP神经网络进行水库滑坡变形预测[J]. 水文地质工程地质, 2013,40(1): 124-128.
YI Q L,ZENG H E,HUANG H F. Reservoir landslide deformation forecast using BP neural network[J].Hydrogeology and Engineering Geology, 2013,40(1): 124-128.
MIAO F S , WU Y , XIE Y P , et al. Research on progressive failure process of Baishuihe landslide based on Monte Carlo model[J]. Stochastic Environmental Research and Risk Assessment, 2017,31:1683-1696.
KANGA F, LIA J J, ZHAOA S Z, et al. Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation[J]. Engineering Structures , 2019,180: 642–653.
张文明, 董增川, 朱成涛,等.基于粒子群算法的水文模型参数多目标优化研究[J]. 水利学报, 2008,39(5): 20-26.
ZHANG W M,DONG Z C,ZHU C T, et al. Automatic calibration of hydrologic model based on multi-objective particle swarm optimization method[J].Journal of Hydraulic Engineering, 2008,39(5): 20-26.
王问宇,袁鹏,邵骏,等. 改进粒子群算法在新安江模型参数优选中的应用[J]. 水力发电, 2008,34(8): 14-16.
WANG W Y,YUAN P,SHAO J, et al. Application of improved particle swarm algorithm to the parameter selection optimization of Xin'anjiang Model[J]. Journal of Hydropower, 2008, 34(8): 14-16.
齐红,任洪娥,贾鹤鸣,等.基于改进PSO神经网络的微米木纤维切削参数优化[J]. 中山大学学报(自然科学版), 2018,57(2): 116-122.
QI H,REN H E,JIA H M, et al. Optimization study of cutting parameters of micron wood fiber based on improved PSO neural network[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018,57(2): 116-122.
SHI Y , EBERHART R C . Empirical study of particle swarm optimization[C]// Congress on Evolutionary Computation. IEEE, 2002.
王维博, 林川,郑永康. 粒子群算法中参数的实验与分析[J]. 西华大学学报(自然科学版), 2008,27(1): 76-80.
WANG W B,LING C, ZHENG Y K. Experiment and analysis of parameters in particle swarm optimization[J].Journal of Xihua University(Natural Science Edition), 2008,27(1): 76-80.
丁根宏,曹文秀. 改进粒子群算法在水库优化调度中的应用[J]. 南水北调与水利科技, 2014,12(1): 118-121.
DING G H,CAO W X. Application of improved particle swarm optimization algorithm in optimal operation of reservoir[J]. South-to-North Water Transfers and Water Science & Technology, 2014,12(1): 118-121.
KENNEDY J , EBERHART R . Particle swarm optimization[C]// Proceedings of ICNN'95 - International Conference on Neural Networks. IEEE, 1995.
沈学利, 张红岩, 张纪锁. 一种新的改进粒子群优化算法[J]. 计算机仿真,2011,28(3): 246-249.
SHEN X L,ZHANG H Y,ZHANG J S. A new improved particle swarm optimization algorithm[J].Computer Simulation, 2011,28(3): 246-249.
刘欣蔚,王浩,雷晓辉,等.粒子群算法参数设置对新安江模型模拟结果的影响研究[J]. 南水北调与水利科技, 2018,16(1): 69-74.
LIU X W, WANG H,LEI X H , et al. Influence of parameter settings in PSO algorithm on simulation results of Xin'anjiang model[J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(1): 69-74.
0
浏览量
1
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构