安徽农业大学理学院, 安徽 合肥 230036
杨俊仙(1976年生),女;研究方向:微分方程、生物数学;E-mail:yangjunxian@ahau.edu.cn
于淑妹(1983年生),女;研究方向:微分方程、生物数学;E-mail:yushumei@ahau.edu.cn
纸质出版日期:2020-07-20,
收稿日期:2019-07-17,
扫 描 看 全 文
杨俊仙,于淑妹.一类具有潜伏感染细胞的时滞病毒感染模型[J].中山大学学报(自然科学版),2020,59(04):158-167.
YANG Junxian,YU Shumei.A delayed virus infection model with latent infection cells[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):158-167.
杨俊仙,于淑妹.一类具有潜伏感染细胞的时滞病毒感染模型[J].中山大学学报(自然科学版),2020,59(04):158-167. DOI: 10.13471/j.cnki.acta.snus.2019.07.17.2019A058.
YANG Junxian,YU Shumei.A delayed virus infection model with latent infection cells[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):158-167. DOI: 10.13471/j.cnki.acta.snus.2019.07.17.2019A058.
提出了一类具有潜伏感染细胞的时滞病毒感染模型,定义了基本再生数,给出了每个平衡点存在的充分条件。通过构造Lyapunov函数和利用LaSalle不变集原理,证明了当基本再生数小于或等于1时,无病平衡点是全局渐近稳定的;当基本再生数大于1时,慢性感染平衡点是全局渐近稳定的,但无病平衡点是不稳定的。 结论表明
模型中的潜伏感染时滞、内时滞和病毒产生时滞并不影响模型的全局稳定性,并通过数值模拟验证了所得理论结果。
A class of delayed virus infection models with latently infected cells are investigated.The basic reproduction number is defined
and the sufficient conditions for the existence of each feasible equilibrium are given.By using Lyapunov functionals and LaSalle's invariance principle
it is proved that when the basic reproduction number is less than or equal to unity
the infection-free equilibrium is globally asymptotically stable;when the basic reproduction number is greater than unity
the chronic-infection equilibrium is globally asymptotically stable
but the infection-free equilibrium is unstable.The results show that the latently infected delay
the intracellular delay
and virus production period in the model do not affect the global stability of the model
and numerical simulations are carried out to illustrate the theoretical results.
潜伏感染细胞Beddington-DeAngelis发生率时滞病毒感染模型全局稳定性
latently infected cellsBeddington-DeAngelis incidencedelayvirus infection modelglobal stability
肖燕妮,周义仓,唐三一. 生物数学原理[M].西安: 西安交通大学出版社,2012.
WANG Y, ZHOU Y C, BRAUER F, et al. Viral dynamics model with CTL immune response incorporating antiretroviral therapy [J].Journal of Mathematical Biology,2013,67(4): 901-934.
PAWELEK K A, LIU S Q, PAHLEVANI F, et al. A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data [J].Mathematical Biosciences,2012,235(1): 98-109.
WODARZ D. Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses [J].Journal of General Virology, 2003, 84(7): 1743-1750.
BALASUBRAMANIAM P, TAMILALAGAN P, PRAKASH M. Bifurcation analysis of HIV infection model with antibody and cytotoxic T-lymphocyte immune responses and Beddington-DeAngelis functional response [J].Mathematical Methods in the Applied Sciences,2015,38(7): 1330-1341.
NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J].Science,1996,272(5258): 74-79.
NOWAK M A, ANDERSON R M, BOERLIJST M C, et al. HIV-1 evolution and disease progression [J]. Science,1996,274(5289): 1008-1011.
PERELSON A S, NELSON P W. Mathematical models of HIV dynamics in vivo [J].SIAM Review,1999,41(1): 3-44.
XU R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay [J].Journal of Mathematical Analysis and Applications,2011,375(1): 75-81.
WANG J L, ZHANG R, KUNIYA T. Global dynamics for a class of age-infection HIV models with nonlinear infection rate [J]. Journal of Mathematical Analysis and Applications,2015,432(1): 289-313.
MIAO H, TENG Z D, KANG C J. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays [J]. Discrete and Continuous Dynamical Systems,Series B,2017,22(6): 2365-2387.
BAGASRA O, POMERANTZ R J. Human immunodeficiency virus type-I provirus is demonstrated in peripheral blood monocytes in vivo: a study utilizing an in situ polymerase chain reaction [J]. AIDS Research and Human Retroviruses,1993,9(1): 69-76.
PACE M J, AGOSTO L, GRAF E H. HIV reservoirs and latency models [J].Virology,2011,411(2): 344-354.
WANG H B, XU R. Stability and Hopf bifurcation in an HIV-1 infection model with latently infected cells and delayed immune response [J].Discrete Dynamics in Nature and Society,2013,DOI: 10.1155/2013/169427http://dx.doi.org/10.1155/2013/169427.
CAPISTRÁN M A. A study of latency, reactivation and apoptosis throughout HIV pathogenesis [J].Mathematical and Computer Modelling,2010,52(7/8): 1011-1015.
KRAKAUER D C, NOWAK M. T-cell induced pathogenesis in HIV: Bystander effects and latent infection [J].Proceedings: Biological Sciences,1999,266(1423): 1069-1075.
WANG H B, XU R, WANG Z W, et al. Global dynamics of a class of HIV-1 infection models with latently infected cells [J]. Nonlinear Analysis: Modeling and Control,2015,20(1): 21-37.
HALE J K, LUNEL S V. Introduction to functional differential equations [M].New York: Springer,1993.
0
浏览量
1
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构