中山大学航空航天学院,广东 广州 510006
杨方浩(1995年生),男;研究方向:污染源识别;E-mail: yangfh6@mail2.sysu.edu.cn
汪利(1988年生),男;研究方向:力学反问题;E-mail: wangli75@mail.sysu.edu.cn
纸质出版日期:2020-09-25,
收稿日期:2019-07-12,
扫 描 看 全 文
杨方浩,吕中荣,汪利.一种基于稀疏正则化的地下水点污染源识别法[J].中山大学学报(自然科学版),2020,59(05):40-48.
YANG Fanghao,LV Zhongrong,WANG Li.An identification method for groundwater point pollution source identification based on sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):40-48.
杨方浩,吕中荣,汪利.一种基于稀疏正则化的地下水点污染源识别法[J].中山大学学报(自然科学版),2020,59(05):40-48. DOI: 10.13471/j.cnki.acta.snus.2019.07.12.2019B082.
YANG Fanghao,LV Zhongrong,WANG Li.An identification method for groundwater point pollution source identification based on sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):40-48. DOI: 10.13471/j.cnki.acta.snus.2019.07.12.2019B082.
提出了一种基于稀疏正则化的方法识别地下水点污染源。首先,对地下水一维对流‒弥散方程时域有限元格式进行拉普拉斯变换得到频域方程,然后建立以
l
1
范数项为约束的地下水点污染源识别问题的目标函数,从而克服空间分布稀疏的点污染源识别问题的不适定性;接着,利用交替优化法进行迭代求解。研究结果表明,所提方法能在噪声条件下有效识别地下水点污染源的位置和强度变化。
This paper proposes a method based on sparse regularization to identify groundwater point pollution sources. Firstly
the time domain finite element discretized equation of groundwater one-dimensional convection-diffusion equation is used to obtain the frequency domain equation by Laplace transform
and then the objective function of the groundwater point pollution source identification problem constrained by the
l
1
norm term is established
thus overcoming the ill-posed problem of the point source identification due to sparse spatial distribution. The identification equation is then solved iteratively using the alternating optimization method. The research results show that the proposed method can effectively identify the position and intensity changes of groundwater pollution sources under noise conditions.
对流-弥散稀疏正则化污染源识别交替优化法正则化参数
convection-dispersionsparse regularizationpollution source identificationalternating optimization methodregularization parameter
姜建军,文冬光.合理开发利用地下水缓解水资源紧缺状况[J].中国水利,2005(13):36-39.
JIANG J J, WEN D G. Exploitation of groundwater resources reasonable to alleviate water shortage [J].China Water Resources, 2005(13):36-39.
王景瑞,胡立堂.地下水污染源识别的数学方法研究进展[J].水科学进展,2017,28(6):943-952.
WANG J R, HU L T. Advances in mathematical methods of groundwater pollution source identification[J]. Advances in Water Science, 2017, 28(6): 943-952.
SKAGGS T H, KABALA Z J. Recovering the release history of a groundwater contaminant[J]. Water Resources Research, 1994, 30(1): 71-79.
LI G, LIU J, FAN X, et al. A new gradient regularization algorithm for source term inversion in 1D solute transportation with final observations[J]. Applied Mathematics and Computation, 2008, 196(2): 646-660.
HUANG C H, LI J X, KIM S. An inverse problem in estimating the strength of contaminant source for groundwater systems[J]. Applied Mathematical Modelling, 2008, 32(4): 417-431.
邢利英,张国珍.基于改进的共轭梯度算法重构地下水污染源项[J].水资源保护,2017,33(3):42-46+58.
XING L Y, ZHANG G Z. Reconstruction of groundwater pollution source term with improved conjugate gradient algorithm[J]. Water Resources Protection,2017,33(3):42-46+58.
ONYARI E, TAIGBENU A. Inverse Green element evaluation of source strength and concentration in groundwater contaminant transport[J]. Journal of Hydroinformatics, 2017, 19(1): 81-96.
MAZAHERI M, SAMANI J M V, SAMANI H M V. Mathematical model for pollution source identification in rivers[J]. Environmental Forensics, 2015, 16(4): 310-321.
WANG Z, ZHANG W, WU B. Regularized optimization method for determining the space-dependent source in a parabolic equation without iteration[J]. Journal of Computational Analysis and Applications, 2016, 20(6):1107-1126.
余潇潇,张林,李安国.基于稀疏系统辨识的空气污染源定位算法[J].清华大学学报(自然科学版),2013,53(8):1077-1081.
YU X X, ZHANG L, LI A G. Sparse system identification algorithm for air pollution source localization[J]. Journal of Tsinghua University(Science and Technology),2013,53(8):1077-1081.
HASE N, MILLER S M, MAAB P, et al. Atmospheric inverse modeling via sparse reconstruction[J]. Geoscientific Model Development, 2017, 10(10): 3695-3713.
潘天成,吕中荣,汪利.基于稀疏正则化的稳态热源识别[J].中山大学学报(自然科学版),2020,59(1):43-49.
PAN T C, LV Z R,WANG L. Steady-state heat source identification based on sparse regularization [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020,59(1):43-49.
宋绍禹. 基于稀疏正则化的声源识别算法研究[D]. 重庆:重庆大学,2018.
SONG S Y. Algorithm Study of Sound Sources Identification Based on Sparsity Regularization[D]. Chongqing: Chongqing University,2018.
杨金忠, 蔡树英, 王旭升. 地下水运动数学模型[M]. 北京:科学出版社, 2009.
ZHANG C D, XU Y L. Comparative studies on damage identification with Tikhonov regularization and sparse regularization[J]. Structural Control and Health Monitoring, 2016, 23(3): 560-579.
BECK A. On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes[J]. SIAM Journal on Optimization, 2015, 25(1): 185-209.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构