1.珠江水利委员会珠江水利科学研究院,广东 广州 510611
2.北京师范大学水科学研究院,北京 100875
刘晓林(1991年生),男;研究方向:水文水资源遥感;E-mail: liuxiaolin25@163.com
杨胜天(1965年生),男;研究方向:水资源与水环境遥感;E-mail: yangshengtian@bnu.edu.cn
纸质出版日期:2020-11-25,
收稿日期:2019-07-08,
扫 描 看 全 文
刘晓林,刘超群,杨胜天等.TRMM卫星降水数据在珠江流域的适用性评价[J].中山大学学报(自然科学版),2020,59(06):70-79.
LIU Xiaolin,LIU Chaoqun,YANG Shengtian,et al.The applicability of TRMM precipitation data in the Pearl River Basin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):70-79.
刘晓林,刘超群,杨胜天等.TRMM卫星降水数据在珠江流域的适用性评价[J].中山大学学报(自然科学版),2020,59(06):70-79. DOI: 10.13471/j.cnki.acta.snus.2019.07.08.2019D030.
LIU Xiaolin,LIU Chaoqun,YANG Shengtian,et al.The applicability of TRMM precipitation data in the Pearl River Basin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(06):70-79. DOI: 10.13471/j.cnki.acta.snus.2019.07.08.2019D030.
利用珠江流域范围74个气象站点的实测降水量,从年、月及日尺度上对流域范围内的TRMM卫星降水数据的精度进行了评价,并在此基础上运用TRMM月降水数据统计分析了珠江流域的降水时空分布特征。结果表明:整体上,珠江流域内TRMM卫星降水数据,在年和月尺度上精度较高,相关系数分别为0.918和0.940,平均相对误差分别为10.87%和22.01%;在日尺度上精度较差,相关系数仅为0.457,平均相对误差达到113.62%。对于TRMM月降水数据在单个气象站点的精度而言,大部分站点相关系数较高、误差较小,相关系数在0.9以上,相对误差在15%以内,各子流域平均相对误差小于13%,但元江、南宁、白色、罗定以及龙州站点误差相对较大。TRMM卫星和气象站点获取的流域年均降水空间分布特征及趋势一致,差异主要分布在地形较为复杂的上游和沿海区域。珠江流域内TRMM卫星降水空间分布上,年均降水整体上呈现由西北向东南逐渐递增的趋势,不同区域间降水量差异明显;时间分布上,一年中大部分降水发生在汛期4~10月,而11月至次年2月降水较少。
The study used the measured precipitation of 74 meteorological stations in the Pearl River Basin to validate the accuracy of TRMM (Tropical Rainfall Measuring Mission) precipitation data on annual, monthly, and daily scales, and analyzed the temporal and spatial distribution characteristics of TRMM monthly precipitation. The results show that the correlation coefficients of TRMM precipitation data in the Pearl River Basin are 0.918 and 0.940, and the average relative errors are 10.87% and 22.01% with higher accuracy on annual and monthly scales overall, while the correlation coefficient of daily precipitation data is 0.457 with poor accuracy and the average relative error is 113.62%. For the TRMM monthly precipitation data from a single station, most of the data have higher correlation coefficient and less error with correlation coefficient above 0.9 and relative error below 15%, and the average relative error of each sub-basin is less than 13% but the data errors from Yuanjiang, Nanning, Baise, Luoding and Longzhou stations are relatively large. The spatial distribution characteristics and trends of annual average precipitation in the Pearl River Basin from TRMM and meteorological stations are consistent, and the differences are mainly distributed in the upstream with complex terrain and coastal areas. In the spatial distribution of TRMM precipitation, the average annual precipitation in the Pearl River Basin generally increases from the northwest area to the southeast area, and the difference in precipitation between different regions is extremely obvious. In terms of temporal distribution, the precipitation is higher from April to October, and less from November to February.
TRMM降水珠江流域精度评价时空分布
TRMMprecipitationthe Pearl River Basinaccuracy validationtemporal and spatial distribution
嵇涛,杨华,刘睿,等. TRMM卫星降水数据在川渝地区的适用性分析[J]. 地理科学进展, 2014, 33(10): 1375-1386.
JI T, YANG H, LIU R, et al. Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region [J]. Progress in Geography, 2014, 33(10): 1375-1386.
吕洋,杨胜天,蔡明勇,等. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 2013, 28(8): 1414-1425.
LU Y, YANG S T, CAI M Y, et al. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin [J]. Journal of Natural Resources, 2013, 28(8): 1414-1425.
刘少华,严登华,王浩,等.中国大陆流域分区TRMM降水质量评价[J]. 水科学进展, 2016, 27(5): 639-651.
LIU S H, YAN D H, WANG H, et al. Evaluation of TRMM 3B42V7 at the basin scale over mainland China [J]. Advances in Water Science, 2016, 27(5): 639-651.
HUFFMAN G J, ADLER R F, ARKIN P, et al. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 5-20.
郝振纯, 童凯, 张磊磊, 等. TRMM降水资料在青藏高原的适用性分析[J]. 水文, 2011, 31(5): 18-23.
HAO Z C, TONG K, ZHANG L L, et al. Applicability analysis of TRMM precipitation estimates in Tibetan Plateau [J]. Journal of China Hydrology, 2011, 31(5): 18-23.
曾红伟,李丽娟. 澜沧江及周边流域TRMM3B43数据精度检验[J]. 地理学报, 2011, 66(7): 994-1004.
ZENG H W, LI L J. Accuracy validation of TRMM 3B43 data in Lancang River Basin [J]. Acta Geographica Sinica, 2011, 66(7): 994-1004.
CAI Y C, JIN C J, WANG A Z, et al. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high Latitudes of China[J]. PLoS One, 2015, 10(4) : e0120026.
JOSHI M K, RAI A, PANDEY A C. Validation of TMPA and GPCP 1DD against the ground truth rain-gauge data for Indian region[J]. International Journal of Climatology, 2012, 33(12): 2633-2648.
李琼,杨梅学,万国宁,等. TRMM 3B43降水数据在黄河源区的适用性评价[J]. 冰川冻土, 2016, 38(3): 620-633.
LI Q, YANG M X, WAN G N, et al. Analysis of the accuracy of TRMM 3B43 precipitation data in the source region of the Yellow River [J]. Journal of Glaciology and Geocryology, 2016, 38(3): 620-633.
李威,蒋平,赵卫权,等. TRMM卫星降水数据在喀斯特山区的适用性分析——以贵州省为例[J]. 水土保持研究, 2016, 23(1): 97-102.
LI W, JIANG P, ZHAO W Q, et al. Analysis on applicability of TRMM precipitation data in Karst areas-A case study in Guizhou Province [J]. Research of Soil and Water Conservation, 2016, 23(1): 97-102.
VILLARINI G, KRAJEWSKI W F, SMITH J A. New paradigm for statistical validation of satellite precipitation estimates: application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D12):106.
QIAO L, HONG Y, CHEN S, et al. Performance assessment of the successive Version 6 and Version 7 TMPA products over the climate-transitional zone in the southern Great Plains, USA[J]. Journal of Hydrology, 2014, 513: 446-456.
唐亦汉,陈晓宏. 近50年珠江流域降雨多尺度时空变化特征及其影响[J]. 地理科学, 2015, 35(4): 476-482.
TANG Y H, CHEN X H. Multi-scale spatio-temporal characteristics and influence of precipitation variation in Zhujiang River Basin during the last 50 years [J]. Scientia Geographica Sinica, 2015, 35(4): 476-482.
谢毅文, 李娟, 陈伟荣,等. 1959-2013年珠江流域平均气温时空变化特征[J]. 中山大学学报(自然科学版), 2016, 55(3): 30-38.
XIE Y W, LI J, CHEN W R, et al. Spatio-temporal variation of average temperature over the Pearl River Basin during 1959-2013 [J]. Acta Scientiarum Naturalum Universitatis Sunyatseni, 2016, 55(3) :30-38.
李麒崙, 张万昌, 易路,等. GPM与TRMM降水数据在中国大陆的精度评估与对比[J]. 水科学进展, 2018, 29(3): 303-313.
LI Q L, ZHANG W C, YI L, et al. Accuracy evaluation and comparison of GPM and TRMM precipitation product over Mailand China[J]. Advances in Water Science, 2018, 29(3): 303-313.
王兆礼,钟睿达,赖成光,等. TRMM卫星降水反演数据在珠江流域的适用性研究——以东江和北江为例[J]. 水科学进展, 2017, 28(2): 174-182.
WANG Z L, ZHONG R D, LAI C G, et al. Evaluation of TRMM 3B42-V7 satellite-based precipitation data product in the Pearl River Basin, China: Dongjiang River and Beijiang River Basin as examples[J]. Advances in Water Science, 2017, 28(2): 174-182.
王申芳,王丽,杨晓灵,等. 珠江流域片省界缓冲区最严格水资源管理的研究[J]. 人民珠江, 2015, 36(2): 16-19.
WANG S F, WANG L, YANG X L, et al. Study on the most strict water resources management of provincial boundary buffer in the Pearl River Valley [J]. Pearl River, 2015, 36(2): 16-19.
吴孝情,陈晓宏,唐亦汉,等. 珠江流域非平稳性降雨极值时空变化特征及其成因[J]. 水利学报, 2015, 46(9): 1055-1063.
WU X Q, CHEN X H, TANG Y H, et al. Spatiotemporal variations and the causes of non-stationary extreme precipitation in the Pearl River Basin [J]. Journal of Hydraulic, 2015, 46(9): 1055-1063.
刘俊峰,陈仁升,韩春坛,等. 多卫星遥感降水数据精度评价[J]. 水科学进展, 2010, 21(3): 343-348.
LIU J F, CHEN R S, HAN C T, et al. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover products [J]. Advances in Water Science, 2010,21(3): 343-348.
0
浏览量
1
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构