邵阳学院理学院,湖南 邵阳 422000
孙文兵(1978年生),男;研究方向:积分不等式;E-mail:swb0520@163.com
纸质出版日期:2020-07-20,
收稿日期:2019-07-03,
扫 描 看 全 文
孙文兵,郑灵红.预不变凸函数的Hermite-Hadamard型分数阶积分不等式的推广[J].中山大学学报(自然科学版),2020,59(04):149-157.
SUN Wenbing,ZHENG Linghong.The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):149-157.
孙文兵,郑灵红.预不变凸函数的Hermite-Hadamard型分数阶积分不等式的推广[J].中山大学学报(自然科学版),2020,59(04):149-157. DOI: 10.13471/j.cnki.acta.snus.2019.07.02.2019A055.
SUN Wenbing,ZHENG Linghong.The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(04):149-157. DOI: 10.13471/j.cnki.acta.snus.2019.07.02.2019A055.
不变凸子集上构造了一个含参数的关于Riemann-Liouville分数阶积分的恒等式
利用构造的积分恒等式为辅助函数,得到几个函数导数绝对值为预不变凸的新Hermite-Hadamard 型分数阶积分不等式。参数取特定值时得到一些不同形式的积分不等式。
An identity with parameter is constructed via Riemann-Liouville fractional integrals on the invex subset.Using the constructed integral identity as the auxiliary function
some new Hermite-Hadamard type fractional integrals inequalities are derived
whose absolute values of the derivatives of the functions are preinvex.When the parameters are taken some specific values
some integral inequalities with different forms are obtained.
预不变凸函数Hermite-Hadamard型不等式Riemann-Liouville分数阶积分参数推广
preinvex functionsHermite-Hadamard type inequalitiesRiemann-Liouville fractional integralsparametergeneralization
WEIR T, MOND B. Pre-invex functions in multiple objective optimization [J].J MathAnal Appl,1988,136: 29-38.
WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming [J].Bull Austral Math Soc,1988,38: 177-189.
SUN W B, LIU Q. New Hermite-Hadamard type inequalities for<math id="M202"><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49500736&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49500751&type=7.958666802.96333337-convex functions and applications to special means [J].J Math Inequal,2017,11(2): 383-397.
İSCAN İ. Hermite-Hadamard type inequalities for harmonically convex functions [J].Hacet J Math Stat,2014,43(6): 935-942.
孙文兵. 关于(h,m)-凸函数乘积的Hadamard-型不等式及应用(英文)[J].中国科学院大学学报,2018,35(2): 145-153.
SUN W B. Hadamard-type inequalities for products of (h,m)-convex functions and its applications [J].Journal of University of Chinese Academy of Sciences, 2018,35(2): 145-153.
DRAGOMIR S S, AGARWAL R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].Appl Math Lett,1998,11: 91-95.
NOOR M A. Hermite-Hadamard integral inequalities for Log-Preinvex functions [J].J Math Anal Approx Theory,2007,2: 126-131.
BARANI A, GHAZANFARI A G, DRAGOMIR S S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex [J].Journal of Inequalities and Applications,2012,2012: 247.
AWAN M U, CRISTESCU G, NOOR M A , et al. Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions [J]. U P B Sci Bull, Series A, 2017,79(3): 33-44.
NOOR M A , NOOR K I ,MIHAI M V, et al. Fractional Hermite-Hadamard inequalities for some classes of differentiable preinvex functions [J]. U P B Sci Bull (Series A),2016,78(3): 163-174.
CHEN F X. On the generalization of some Hermite-Hadamard inequalities for functions with convex absolute values of the second derivatives via fractional integrals [J].Ukr Mat Zh,2018,70(12): 1696-1706.
孙文兵.分数次积分下关于s-凸函数的新Hermite-Hadamard型不等式[J].浙江大学学报(理学版),2017,44(5):531-537.
SUN W B. New Hermite-Hadamard-type inequalities for s-convex functions via fractional integrals [J].Journal of Zhejiang University (Science Edition),2017,44(5): 531-537.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构