中山大学材料科学与工程技术学院,广东 广州 510275
谢安治(1996年生),男;研究方向:纳米材料与纳米结构;Email: xieanzh@mail2.sysu.edu.cn
李继玲(1979年生),女;研究方向:纳米材料与纳米结构;Email: lijiling@mail.sysu.edu.cn
纸质出版日期:2020-09-25,
收稿日期:2019-06-27,
扫 描 看 全 文
谢安治,文天珍,李继玲.Ni原子表面吸附和笼内封装掺杂硼富勒烯B40的功能化应用研究[J].中山大学学报(自然科学版),2020,59(05):49-56.
XIE Anzhi,WEN Tianzhen,LI Jiling.Theoretical study about the functionalized applications of the Ni-doped endohedral Ni@B40 and exohedral Ni-B40 metallofullerene complexes:an ab initio study[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):49-56.
谢安治,文天珍,李继玲.Ni原子表面吸附和笼内封装掺杂硼富勒烯B40的功能化应用研究[J].中山大学学报(自然科学版),2020,59(05):49-56. DOI: 10.13471/j.cnki.acta.snus.2019.06.27.2019B063.
XIE Anzhi,WEN Tianzhen,LI Jiling.Theoretical study about the functionalized applications of the Ni-doped endohedral Ni@B40 and exohedral Ni-B40 metallofullerene complexes:an ab initio study[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(05):49-56. DOI: 10.13471/j.cnki.acta.snus.2019.06.27.2019B063.
新型非碳纳米结构的研究一直广受关注。因零维硼元素富勒烯笼状结构B
40
的实验合成,以及新型的硼富勒烯可能具有类似于碳富勒烯(如C
60
)一样重要的学术价值和应用前景,关于B
40
更进一步的功能化应用研究变得十分必要。采用第一原理,文章开展了过渡金属元素Ni对硼富勒烯B
40
进行表面化学吸附及笼内封装的功能化应用研究。计算结果表明,无论Ni原子在B
40
表面吸附还是笼内封装,均可与B
40
表面的B原子相结合形成Ni‒B键,对应形成不同的稳定的金属富勒烯复合结构。且, Ni原子掺杂B
40
所形成的金属富勒烯复合产物结合能约5.18 ~ 7.12 eV/atom, 表明Ni原子与B
40
的表面吸附和笼内封装属于化学作用过程,所形成的金属富勒烯复合产物具有较高的稳定性。对金属富勒烯复合产物的电子特性和磁性进行计算,发现:Ni原子表面吸附和内嵌的金属富勒烯复合结构,由于Ni原子的掺杂引入,其能隙相对于全硼富勒烯B
40
均有一定程度的减小;同时,磁性Ni原子与全硼富勒烯作用后,通过轨道电子的转移,Ni原子磁性完全消失而B
40
富勒烯笼内的B原子不产生自旋极化,因而金属富勒烯的总磁矩均为零。这种通过Ni的掺杂可调整富勒烯分子结构能隙又同时保持整个体系的磁矩为零的电子特点,对于此类金属富勒烯作为半导体分子器件的应用非常有意义。
We performed systematically spin-polarized density functional calculations to study the structural configurations
electronic and magnetic properties of the single Ni doped endohedral Ni@B
40
and exohedral Ni‒B
40
metallofullerene complexes. The results revealed different stable configurations of the Ni‒doped metallofullerenes depending on the positions of the doped Ni atoms. The calculated binding energies of all the considered Ni‒doped metallofullerenes are ranged from 5.18 to 7.12 eV/atom
which indicates the chemical interactions between the doped‒Ni atom and the B atom of B
40
. Thus we conclude that a single Ni atom can be chemically adsorbed on the surface or encapsulated in the hollow cage of B
40
to form stable Ni‒doped metallofullerenes. By introducing dopant states
the energy gap of the Ni‒doped metallofullerenes has been partly reduced
due to the local distortions and charge transfer. As a consequence of the high hybridization and confinement effect
the hybrid Ni‒doped metallofullerene complexes have an attractive characteristic of the magnetic properties: nonmagnetic complexes systems with the inherent magnetic moments of the Ni atom completely disappeared
whether the Ni adsorbed on the surface of B
40
or encapsulated in the cage. These fascinating findings of the tunable electronic and magnetic properties of the Ni‒doped B
40
metallofullerenes imply that this type of metallofullerenes may be a promising candidate for electronic devices
especially expected to be applicable as a single molecular device.
全硼富勒烯B40富勒烯包合单分子器件第一原理计算
all-boron fullerene B40metallofullerenesingle molecular deviceab initio calculation
SZWACKI N G, SADRZADEH A, YAKOBSON I B. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure[J]. Physics Review Letters,2007,98:166804-4.
TANG H, ISMAIL-BEIGI S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets[J]. Physics Review Letters,2007,99:115501-4.
LI H, SHAO N, SHANG B, et al. Icosahedral B12-containing core–shell structures of B80 [J]. Chemical Communications,2010,46:3878-3880.
ZHAO J, WANG L, LIU F Y, et al. B80 and other medium-sized boron clusters: core-shell structures, not hollow cages[J]. The Journal of Physical Chemistry A,2010,114:9969-9972.
ZHAI H J, ZHAO Y F, WEI L L, et al. Observation of an all-boron fullerene[J]. Nature Chemistry,2014,6:727-731.
CHEN Q, WEI L L, ZHAO Y F, et al. Experimental and theoretical evidence of an axially chiral borospherene[J]. ACS Nano,2015,9:754-760.
HIURA H, MIYAZAKI Y, KANAYAMA T, Formation of metal-encapsulating Si cage clusters [J]. Physics Review Letters,2001,86:1733-1736.
KUMAR V, KAWAZOE Y, Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters[J].Physical Review B,2002,65:073404-4.
SUN Q, WANG Q, BRIERE T M, et al. First-principles calculations of metal stabilized Si20 cages[J]. Physical Review B,2002,65:235417-5.
ORDEJON P, ARTACHO E, SOLER J M, Self-consistent order-N density-functional calculations for very large systems[J]. Physical Review B,1996, 53:R10441-R10444.
RUBIO A, PORTAL D S, ARTACHO E, Electronic states in a finite carbon nanotube: a one-dimensional quantum box[J]. Physics Review Letters, 1999,82:3520-3523.
SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. Journal of Physics: Condensed Matter,2002,14:2745-2779.
BYLANDER D M, KLEINMAN L. 4f resonances with norm-conserving pseudopotentials[J]. Physical Review B,1990, 41:907-912.
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physics Review Letters,1996, 77:3865-3868.
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B,1976, 13:5188-5192.
LI J L, YANG G W. Ni@B80: a single molecular magnetic switch [J]. Applied Physics Letters,2009, 95:133115-3.
YAGI Y, BRIERE T M, SLUITER M H F. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: a first-principles study[J]. Physical Review B,2004, 69:075414-9.
DUFFY D M, BLACKMAN J A.Magnetism 3d transition-metal adatoms and dimers on graphite [J]. Physical Review B,1998, 58:7443-7449.
WANG J T, CHEN C F, WANG E G, et al. Highly stable and symmetric boron caged B@Co12@B80 core-shell cluster [J]. Applied Physics Letters,2009, 94:133102-3.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构